贪心算法的原理以及应用
迪丽瓦拉
2025-05-31 07:01:53
0

文章目录

  • 0、概念
    • 0.1.定义
    • 0.2.特征
    • 0.3.步骤
    • 0.4.适用
  • 1、与动态规划的联系
    • 1.1.区别
    • 1.2.联系
  • 2、例子
  • 3、总结
  • 4、引用


在这里插入图片描述

0、概念

0.1.定义

贪心算法(greedy algorithm ,又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,算法得到的是在某种意义上的局部最优解 。
贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择
贪心算法是一种对某些求最优解问题的更简单、更迅速的设计技术。贪心算法的特点是一步一步地进行,常以当前情况为基础根据某个优化测度作最优选择,而不考虑各种可能的整体情况,省去了为找最优解要穷尽所有可能而必须耗费的大量时间。贪心算法采用自顶向下,以迭代的方法做出相继的贪心选择,每做一次贪心选择,就将所求问题简化为一个规模更小的子问题,通过每一步贪心选择,可得到问题的一个最优解。虽然每一步上都要保证能获得局部最优解,但由此产生的全局解有时不一定是最优的,所以贪心算法不要回溯

0.2.特征

利用贪心法求解的问题应具备如下2个特征:
1、贪心选择性质
一个问题的整体最优解可通过一系列局部的最优解的选择达到,并且每次的选择可以依赖以前作出的选择,但不依赖于后面要作出的选择。这就是贪心选择性质。对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解 。
2、最优子结构性质
当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的最优子结构性质是该问题可用贪心法求解的关键所在。在实际应用中,至于什么问题具有什么样的贪心选择性质是不确定的,需要具体问题具体分析 。

0.3.步骤

贪心算法一般按如下步骤进行:
①建立数学模型来描述问题 。
②把求解的问题分成若干个子问题 。
③对每个子问题求解,得到子问题的局部最优解 。
④把子问题的解局部最优解合成原来解问题的一个解 。

0.4.适用

由贪心算法的定义来说,贪心算法一般适用的场所:
1、贪心算法一般用来解决求最大或最小解 ;
2、贪心算法只能确定某些问题的可行性范围。


1、与动态规划的联系

1.1.区别

1.贪心:每一步的最优解一定包含上一步的最优解,上一步之前的最优解则不作保留;
动态规划:全局最优解中一定包含某个局部最优解,但不一定包含前一个局部最优解,因此需要记录之前的所有的局部最优解 ;
2、动态规划算法通常以自底向上的方式解各子问题,而贪心算法则通常自顶向下的方式进行。
3、根据以上两条可以知道,贪心不能保证求得的最后解是最佳的,一般复杂度低;而动态规划本质是穷举法,可以保证结果是最佳的,复杂度高。

1.2.联系

1、都是分解成子问题来求解,都需要具有最优子结构
2、所有的贪心问题都可以用动态规划来求解,可以这么说,贪心算法是动态规划的特例。

举个列子:平时购物找零钱时,为使找回的零钱的硬币数最少,不要求找零钱的所有方案,而是从最大面值的币种开始,按递减的顺序考虑各面额,先尽量用大面值的面额,当不足大面值时才去考虑下一个较小面值,这就是贪心算法 。

有很多经典的应用,比如霍夫曼编码,普利姆和克鲁斯卡尔最小生成树算法,还有迪杰斯特拉单源最短路径算法,都是使用了这种思维。


2、例子

1、题目:n个作业组成的作业集,可由m台相同机器加工处理。要求给出一种作业调度方案,使所给的n个作业在尽可能短的时间内由m台机器加工处理完成。
2、思路:作业不能拆分成更小的子作业;每个作业均可在任何一台机器上加工处理。 这个问题是NP完全问题,还没有有效的解法(求最优解),但是可以用贪心选择策略设计出较好的近似算法(求次优解)。当n<=m时,只要将作业时间区间分配给作业即可;当n>m时,首先将n个作业从大到小排序,然后依此顺序将作业分配给空闲的处理机。也就是说从剩下的作业中,选择需要处理时间最长的,把它分配给当前总累计需要工作时长最短的机器。这样一来,这个调度问题可以理解为一个分配问题,我们通过这种方案,使得几台机器获得接近的工作总时长,达到整体的最短的工作时长的效果。
3、算法实现:

	/**多机调度问题*/public void greedy(){int time[] = {9,7,8,4,2,1,3};int number = 3;int Sumtime = getNumber4(time,number);println("花费的最小总时间:"+Sumtime);		}int getNumber(int time[] , int number){int usedTime=0;               //最长时间为总时间int[] fin = new int[number];  //单机处理时间		for(int k=0;kfin[k]=0;}		if(number>time.length)return time[0];else {			for( int i=0 ; i  for( int j=0;jif(time[j]>time[j+1]){int temp = time[j+1];time[j+1]=time[j];time[j]=temp;}}int min=0;; int value=100;for(int k=0;kif(fin[k]min=k;value=fin[k];}						  }					   						fin[min]+=time[time.length-1-i];							   } int min=0;; int value=100;for(int k=0;kif(fin[k]min=k;value=fin[k];}				  }fin[min]+=time[0];for( int n=0;nif(fin[n]>usedTime){usedTime=fin[n];}}return usedTime;}		}

3、总结

1、贪心算法其实是动态规划的一种特列,能用贪心的地方动态规划也适用;
2、贪心算法比动态规划更高效,他不需要保存历史值,当前的局部值为当前最优值,所u以最后的结果不一定是全局最优值;
3、贪心算法自上而下,层层分解为子问题求值。


4、引用

1、动态规划和贪心算法的区别
2、贪心算法的几种经典例题
3、


相关内容

热门资讯

linux入门---制作进度条 了解缓冲区 我们首先来看看下面的操作: 我们首先创建了一个文件并在这个文件里面添加了...
C++ 机房预约系统(六):学... 8、 学生模块 8.1 学生子菜单、登录和注销 实现步骤: 在Student.cpp的...
A.机器学习入门算法(三):基... 机器学习算法(三):K近邻(k-nearest neigh...
数字温湿度传感器DHT11模块... 模块实例https://blog.csdn.net/qq_38393591/article/deta...
有限元三角形单元的等效节点力 文章目录前言一、重新复习一下有限元三角形单元的理论1、三角形单元的形函数(Nÿ...
Redis 所有支持的数据结构... Redis 是一种开源的基于键值对存储的 NoSQL 数据库,支持多种数据结构。以下是...
win下pytorch安装—c... 安装目录一、cuda安装1.1、cuda版本选择1.2、下载安装二、cudnn安装三、pytorch...
MySQL基础-多表查询 文章目录MySQL基础-多表查询一、案例及引入1、基础概念2、笛卡尔积的理解二、多表查询的分类1、等...
keil调试专题篇 调试的前提是需要连接调试器比如STLINK。 然后点击菜单或者快捷图标均可进入调试模式。 如果前面...
MATLAB | 全网最详细网... 一篇超超超长,超超超全面网络图绘制教程,本篇基本能讲清楚所有绘制要点&#...
IHome主页 - 让你的浏览... 随着互联网的发展,人们越来越离不开浏览器了。每天上班、学习、娱乐,浏览器...
TCP 协议 一、TCP 协议概念 TCP即传输控制协议(Transmission Control ...
营业执照的经营范围有哪些 营业执照的经营范围有哪些 经营范围是指企业可以从事的生产经营与服务项目,是进行公司注册...
C++ 可变体(variant... 一、可变体(variant) 基础用法 Union的问题: 无法知道当前使用的类型是什...
血压计语音芯片,电子医疗设备声... 语音电子血压计是带有语音提示功能的电子血压计,测量前至测量结果全程语音播报࿰...
MySQL OCP888题解0... 文章目录1、原题1.1、英文原题1.2、答案2、题目解析2.1、题干解析2.2、选项解析3、知识点3...
【2023-Pytorch-检... (肆十二想说的一些话)Yolo这个系列我们已经更新了大概一年的时间,现在基本的流程也走走通了,包含数...
实战项目:保险行业用户分类 这里写目录标题1、项目介绍1.1 行业背景1.2 数据介绍2、代码实现导入数据探索数据处理列标签名异...
记录--我在前端干工地(thr... 这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 前段时间接触了Th...
43 openEuler搭建A... 文章目录43 openEuler搭建Apache服务器-配置文件说明和管理模块43.1 配置文件说明...