白平衡,颜色校正,颜色映射When Color Constancy Goes Wrong, brown
迪丽瓦拉
2025-05-29 02:56:05
0

文章目录

  • 一,When Color Constancy Goes Wrong: Correcting Improperly White-Balanced Images
    • 1. 执行颜色转换 3*11矩阵:
    • 2. 特征提取
    • 3. 在一个上万张图片和对应的颜色矩阵 数据库中。
    • 4. 整体框架如下
  • 二,What Else Can Fool Deep Learning? Addressing Color Constancy Errors on Deep Neural Network Performance
    • 1. 白平衡不准的图像 输入到 深度学习模型中 会降低性能
    • 2. 因此作者提出一种数据增强操作
  • 三,Color Temperature Tuning: Allowing Accurate Post-Capture White-Balance Editing
  • 四,A study of digital camera colorimetric characterisation based on polynomial modelling.
  • 五,Colour Correction using Root-Polynomial Regression
    • 1. 采用多项式矩阵转换 比 LCC(线性ccm)更好
    • 因此作者提出 RPCC
  • 六,Beyond White: Ground Truth Colors for Color Constancy Correction
  • 七,Improving Color Reproduction Accuracy on Cameras
    • 1. camera-raw 转换为camera-xyz
    • 2. 一般isp中的ccm
    • 3. 如果用full matrix代替白平衡,ccm 变为固定就是作者提出的方法。
  • 八,Auto White-Balance Correction for Mixed-Illuminant Scenes

一,When Color Constancy Goes Wrong: Correcting Improperly White-Balanced Images

1. 执行颜色转换 3*11矩阵:

为什么选择3*11矩阵,作者在 补充材料 有说到各个kernel function的表现

在这里插入图片描述

下图说明 3*11表现较好
在这里插入图片描述

Graham D Finlayson, Michal Mackiewicz, and Anya Hurlbert. Color correction using root-polynomial regression.IEEE Transactions on Image Processing, 24(5):1460–1470,2015.
和 Guowei Hong, M Ronnier Luo, and Peter A Rhodes. A study of digital camera colorimetric characterisation based on polynomial modelling. Color Research & Application,26(1):76–84, 2001.

这两篇论文可以读一下

2. 特征提取

借鉴ccc, ffcc 的特征提取方法
在这里插入图片描述

然后PCA特征降维作为图像特征。

3. 在一个上万张图片和对应的颜色矩阵 数据库中。

根据图像特征搜索 k个最近邻图像和找到对应的颜色转换矩阵, 然后插值得到最终的颜色转换矩阵

4. 整体框架如下

在这里插入图片描述

二,What Else Can Fool Deep Learning? Addressing Color Constancy Errors on Deep Neural Network Performance

1. 白平衡不准的图像 输入到 深度学习模型中 会降低性能

在这里插入图片描述

2. 因此作者提出一种数据增强操作

该数据增强操作可以生成一个场景在各种色温下的图像。

1) 首先生成训练数据集: 1797个正确白平衡的sRGB 图像,每个图像对应两个风格(Camera Standard and Adobe Standard),每个风格包含 5个不同色温的图像, 因此每个正确的sRGB 伴随 10个其他色温图像。
2)颜色映射矩阵: 每个正确的sRGB 转换到 10个其他色温图像 对应的矩阵。本文使用的是 3*9矩阵.
3)计算特征: 计算正确白平衡的sRGB图像的 特征,同上。至此数据库所需要的数据计算完毕
4)predict:
input 一个正确sRGB图像,计算特征。 然后找到数据库中特征最相近的K个图像,根据距离计算weight, 然后插值得到最后的10个转换矩阵,生成其他10个色温类型的图像。

原理可以用下图概况:
在这里插入图片描述

三,Color Temperature Tuning: Allowing Accurate Post-Capture White-Balance Editing

同样利用颜色转换矩阵,但是没有训练集和K近邻插值。

目的是这样的:生成不同色温的图像,使之和isp输出的一致。
在jpg中嵌入 若干个色温的转换矩阵, 然后通过色温插值可以得到任意色温的图像。

原理框图如下:
一个色温x的sRGB图像,以及x_tiny版本
若干个色温y_i 的 sRGB图像 tiny版本:y_tiny_i
x_tiny 到 y_tiny_i的映射矩阵求出,文中用的是3*24的矩阵。

矩阵嵌入到jpg的metedata中, 想转换为其他色温,只需要乘上对应的颜色转换矩阵即可。

在这里插入图片描述

四,A study of digital camera colorimetric characterisation based on polynomial modelling.

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

五,Colour Correction using Root-Polynomial Regression

1. 采用多项式矩阵转换 比 LCC(线性ccm)更好

在这里插入图片描述

但是存在一个缺点,就是多项式方法 对于 不同亮度的图像得到的转换矩阵是不同的,这时如果训练的时候使用的图像亮度 和 预测的时候不同,可能会出现颜色偏差,效果不好。
如下图:
在这里插入图片描述

因此作者提出 RPCC

在这里插入图片描述

这样的多项式求得的矩阵 有更好的亮度保持性。
文章作者有证明。

结果表明:RPCC有很好的表现
在这里插入图片描述

六,Beyond White: Ground Truth Colors for Color Constancy Correction

这篇文章主要是在找24 color checker的ground truth。
这个目的的用处感觉不是很大,一般不都是sRGB 或者其他色域的标准值 作为groundtruth吗?
为什么还要根据数据集找到一个相机的groundtruth.

一般使用的时候也是已知 ground truth(自己的目标颜色,或者产品经理想要的效果), 然后通过最小二乘法求CCM即可。

不过还是说下
本文的几个概念:

  1. diagonal matrix 没有 full matrix对 24 color 校正的好。
    这肯定啦
    在这里插入图片描述

  2. 在某些光源下,diagonal matrix 和 full matrix 的表现差不多(对于24 color的校正,不只是gray color), 如下图:

在这里插入图片描述

  1. 在daylight 6000K左右光源下, diagonal matrix 的校正效果接近 full matrix。

    1)然后现有数据集一般都是只标灰块,没有24色的 gt, 因此作者想得到白平衡数据集中的24 color的gt, 如何得到呢?
    还是找出6000k daylight 色温附近的图像,利用 diagonal matrix标定,得到24color作为gt.
    主要框架如下稍微复杂:但原理很简单,就是找出 daylight 图像,标定,得到 gt.
    在这里插入图片描述

    以上就是为白平衡数据集 找到24色 的gt.

    2)然后利用这个gt 优化得到 full ccm. 采用的方法是 Intensity independent rgb-to-xyz color camera calibaretion(AIC,2012), 说是比最小二乘方法应该好一些。
    效果确实比 diagonal matrix好,看下图。
    在这里插入图片描述

  2. 上面的标定或者最小二乘方法求CCM是有24色卡的情况,平时拍图没有色卡。awb自动白平衡,那么有没有自动ccm呢?

    本文提出的这个观点比较新颖,自动ccm,是否有用呢,现代 ISP中肯定包括awb, 但是没有自动ccm。 自动白平衡->自动ccm.在一般手机isp中,标定若干特定cct下的ccm, awb算出当前cct, 插值得到ccm.

    作者将两个自动白平衡方法 改造为 自动求full matrix来达到更好的白平衡。就是Bayesian method [24, 31] and
    the Corrected-Moments method[14]
    在这里插入图片描述

七,Improving Color Reproduction Accuracy on Cameras

看懂这个论文首先要理解一般手机里面的isp

camera-raw(受光源影响)-> wb -> camera-XYZ -> ccm -> linear sRGB

其中wb 是不能完全去除光源的影响的,只能去除灰色块的光源的影响。
此外手机里的ccm 是 cameraXYZ -> XYZ -> sRGB 两个转换矩阵的结果。 论文中的ccm一般指 cameraXYZ -> XYZ

本文提出的方法描述的过程是

camera-raw(受光源影响)-> wb -> camera-XYZ -> ccm -> XYZ的过程。

其中 diagonal wb 得不到标准camera-XYZ, 造成 camera-XYZ 转换为 XYZ的 颜色转换矩阵 不是固定的。
理论上应该是固定的,camera-XYZ 到 XYZ。 但是由于只通过diagonal wb并不能很好的转换camera-raw到camera-XYZ。 除了灰块外的颜色都会受到光源的影响,因此需要标定不同的ccm, 现在手机isp中一般会预先标定多个色温的ccm, 然后online插值得到,文中说只预先标定2个不太准确。。。

1. camera-raw 转换为camera-xyz

通过diagonal wb 和 通过 full matrix 效果肯定是不同的,可以参考上一篇论文介绍,Beyond White: Ground Truth Colors for Color Constancy Correction

在这里插入图片描述

所以说如果使用full matrix做 color constancy, 各色温下的ccm其实是固定的了。

2. 一般isp中的ccm

先标定若干个色温下的ccm
然后online计算的色温下的ccm通过 插值得到。

在这里插入图片描述

3. 如果用full matrix代替白平衡,ccm 变为固定就是作者提出的方法。

说是可以提高XYZ的精度, 其实就是把 ccm变换 交换位置,并不能提高精度。
在这里插入图片描述

图像效果对比,可以看出 method2相比method1没有提高太多精度,method1采用3各预先标定的ccm, 如果isp中采用更多,可以预计应该不会有太多差异。
在这里插入图片描述

一些实验的指标:
在这里插入图片描述

八,Auto White-Balance Correction for Mixed-Illuminant Scenes

混光情况下的 awb

1)M 通过 small image提前计算好(计算开销小)
2)M应用在 SR 图像上得到 各种色温大图
3)大图下采样可以得到小图,小图输入网络得到weight
4)放大weight, 在大图上weight 插值得到 最终的结果
在这里插入图片描述

相关内容

热门资讯

linux入门---制作进度条 了解缓冲区 我们首先来看看下面的操作: 我们首先创建了一个文件并在这个文件里面添加了...
C++ 机房预约系统(六):学... 8、 学生模块 8.1 学生子菜单、登录和注销 实现步骤: 在Student.cpp的...
A.机器学习入门算法(三):基... 机器学习算法(三):K近邻(k-nearest neigh...
数字温湿度传感器DHT11模块... 模块实例https://blog.csdn.net/qq_38393591/article/deta...
有限元三角形单元的等效节点力 文章目录前言一、重新复习一下有限元三角形单元的理论1、三角形单元的形函数(Nÿ...
Redis 所有支持的数据结构... Redis 是一种开源的基于键值对存储的 NoSQL 数据库,支持多种数据结构。以下是...
win下pytorch安装—c... 安装目录一、cuda安装1.1、cuda版本选择1.2、下载安装二、cudnn安装三、pytorch...
MySQL基础-多表查询 文章目录MySQL基础-多表查询一、案例及引入1、基础概念2、笛卡尔积的理解二、多表查询的分类1、等...
keil调试专题篇 调试的前提是需要连接调试器比如STLINK。 然后点击菜单或者快捷图标均可进入调试模式。 如果前面...
MATLAB | 全网最详细网... 一篇超超超长,超超超全面网络图绘制教程,本篇基本能讲清楚所有绘制要点&#...
IHome主页 - 让你的浏览... 随着互联网的发展,人们越来越离不开浏览器了。每天上班、学习、娱乐,浏览器...
TCP 协议 一、TCP 协议概念 TCP即传输控制协议(Transmission Control ...
营业执照的经营范围有哪些 营业执照的经营范围有哪些 经营范围是指企业可以从事的生产经营与服务项目,是进行公司注册...
C++ 可变体(variant... 一、可变体(variant) 基础用法 Union的问题: 无法知道当前使用的类型是什...
血压计语音芯片,电子医疗设备声... 语音电子血压计是带有语音提示功能的电子血压计,测量前至测量结果全程语音播报࿰...
MySQL OCP888题解0... 文章目录1、原题1.1、英文原题1.2、答案2、题目解析2.1、题干解析2.2、选项解析3、知识点3...
【2023-Pytorch-检... (肆十二想说的一些话)Yolo这个系列我们已经更新了大概一年的时间,现在基本的流程也走走通了,包含数...
实战项目:保险行业用户分类 这里写目录标题1、项目介绍1.1 行业背景1.2 数据介绍2、代码实现导入数据探索数据处理列标签名异...
记录--我在前端干工地(thr... 这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 前段时间接触了Th...
43 openEuler搭建A... 文章目录43 openEuler搭建Apache服务器-配置文件说明和管理模块43.1 配置文件说明...