离散选择模型中的分散系数theta到底该放在哪里呢?
迪丽瓦拉
2025-05-31 08:33:21
0

前言

\quad~~   一直都在想为啥子离散选择模型中分散系数以分母形式出现而在路径选择公式中以系数形式出现呢?看着公式想了想,现在想出了一个似乎感觉应该差不多很合理的答案,希望与大家一起探讨。

进入正题

根据随机效用理论,决策者在面对 nnn 个备选方案做选择时,会根据自身的意愿感知哪一个备选方案对自身而言是最好的,从而作出自身选择。这里的最好用数量来进行衡量就可以说是效用最高的

比如从A点到B点共有 nnn 条路,我现在需要从A点到B点,从节约时间的角度来考虑的话,那么我肯定希望选择最快捷的一条路。即如果我能以最快的时间到达我的目的地的话,对我而言,我就得到了最高的出行效用。

通常呢,我们的感知能力是有限的,如果我们记选择任意一个方案 jjj 的效用为 UjU_jUj​,那么 UjU_jUj​ 为一个随机变量,它可以分为两部分,一部分呢是我们可以以实际那数字量化出来的,我们称为系统效用。另一部分呢为我们无法测量出来的,或估测时的误差,为一个随机变量,我们称为感知误差项。因此这里的方案 jjj 的效用 UjU_jUj​ 就可以写为系统效用 VjV_jVj​ 与随机误差项 εj\varepsilon_jεj​ 的和,即:
Uj=Vj+εj.(1)U_j=V_j+\varepsilon_j.\tag{1}Uj​=Vj​+εj​.(1)
在多项式Logit模型中,我们假设随机误差项 εj\varepsilon_jεj​ 服从零均值的Gumbel分布,其概率密度函数与累积分布函数分别为:
f(x)=1θexp(−xθ−Φ)exp[−exp(xθ−Φ)],(2)f(x)=\frac{1}{\theta}exp(-\frac{x}{\theta}-\Phi)exp[-exp(\frac{x}{\theta}-\Phi)],\tag{2}f(x)=θ1​exp(−θx​−Φ)exp[−exp(θx​−Φ)],(2)F(x)=Pr(εj≤x)=exp[−exp(xθ−Φ)],(3)F(x)=Pr(\varepsilon_j\leq x)=exp[-exp(\frac{x}{\theta}-\Phi)],\tag{3}F(x)=Pr(εj​≤x)=exp[−exp(θx​−Φ)],(3)这里的参数 Φ\PhiΦ 为欧拉常数,Φ≈0.577\Phi\approx0.577Φ≈0.577。
从而可以得出决策者选择备选方案 jjj 的概率为:pj=Pr(Uj>Uk,∀k≠j)=exp(Vj/θ)∑kexp(Vk/θ).(4)p_j=Pr(U_j>U_k,\forall k\neq j)=\frac{exp(V_j/\theta)}{\sum_k exp(V_k/\theta)}.\tag{4}pj​=Pr(Uj​>Uk​,∀k=j)=∑k​exp(Vk​/θ)exp(Vj​/θ)​.(4)

而通常在路径选择情形中我们以出行阻抗作为我们的出行负效用(因为我们出行就会花费时间,金钱等,这都属于是对我们自身资源的一种消耗),负效用越小的路径被选择的可能性就会越大。这里呢,同样因为人们的感知,计算等能力有限,我们所判定的出行负效用也为一个随机变量,为可直接估量的系统效用与随机误差项的和。同样以路径 jjj 为例,其感知出行负效用为 CjC_jCj​, 可进行估测的系统效用为 cjc_jcj​,随机误差项为 ξj\xi_jξj​, 则 CjC_jCj​ 就可写为:
Cj=cj+ξj,(5)C_j=c_j+\xi_j,\tag{5}Cj​=cj​+ξj​,(5)那么选择路径 jjj 的效用就可以写为:Uj=−Cj,(6)U_j=-C_j,\tag{6}Uj​=−Cj​,(6)那么我们使用概率密度函数公式 (2) 计算得出的选择路径 jjj 的概率为:
pj=Pr(Uj>Uk,∀k≠j)=exp(−cj/θ)∑kexp(−ck/θ).(7)p_j=Pr(U_j>U_k,\forall k\neq j)=\frac{exp(-c_j/\theta)}{\sum_k exp(-c_k/\theta)}.\tag{7}pj​=Pr(Uj​>Uk​,∀k=j)=∑k​exp(−ck​/θ)exp(−cj​/θ)​.(7)但通常呢,路径选择概率会写为如下形式:
pj=Pr(Uj>Uk,∀k≠j)=exp(−θcj)∑kexp(−θck).(8)p_j=Pr(U_j>U_k,\forall k\neq j)=\frac{exp(-\theta c_j)}{\sum_k exp(-\theta c_k)}.\tag{8}pj​=Pr(Uj​>Uk​,∀k=j)=∑k​exp(−θck​)exp(−θcj​)​.(8)所以公式 (7) 和 (8) 同样是路径选择概率公式为什么不一样呢?

解决问题

观察概率密度函数,即公式 (2), 如果令 y=−xθy=-\frac{x}{\theta}y=−θx​, 那么就有f(−θy)=1θexp(y−Φ)exp[−exp(y−Φ)],(9)f(-\theta y)=\frac{1}{\theta}exp(y-\Phi)exp[-exp(y-\Phi)],\tag{9}f(−θy)=θ1​exp(y−Φ)exp[−exp(y−Φ)],(9)那么θf(−θy)=exp(y−Φ)exp[−exp(y−Φ)],(10)\theta f(-\theta y)=exp(y-\Phi)exp[-exp(y-\Phi)],\tag{10}θf(−θy)=exp(y−Φ)exp[−exp(y−Φ)],(10)对应的累积分布函数为θF(−θy)=exp[−exp(y−Φ)],(11)\theta F(-\theta y)=exp[-exp(y-\Phi)],\tag{11}θF(−θy)=exp[−exp(y−Φ)],(11)看着公式 (10) 和公式 (11) 是不是相对于(2),(3) 来说更简洁呢?公式 (10) 和公式 (11) 变成了零均值的标准Gumbel分布。所以如果公式(2)为随机变量 εj\varepsilon_jεj​ 的概率密度函数,从简化的角度来看,我们是不是可以让随机变量 ξj=−εj/θ\xi_j =- \varepsilon_j/\thetaξj​=−εj​/θ,即εj=−θξj\varepsilon_j= -\theta \xi_jεj​=−θξj​,那么为了统一公式 (6),我们可以令 Vj=−θcjV_j = -\theta c_jVj​=−θcj​,那么 εj\varepsilon_jεj​ 经过处理后的概率密度函数就可以表示为公式 (10) 和公式 (11),即选择路径 jjj 的概率就表示为pj=∫−∞+∞exp[−exp(εj+Vj−Vk−Φ)]∗exp(εj−Φ)exp[−exp(εj−Φ)]dεj,(12)p_j=\int_{-\infty}^{+\infty}exp[-exp(\varepsilon_j+V_j-V_k-\Phi)]* \\ exp(\varepsilon_j-\Phi)exp[-exp(\varepsilon_j-\Phi)]d\varepsilon_j, \tag{12}pj​=∫−∞+∞​exp[−exp(εj​+Vj​−Vk​−Φ)]∗exp(εj​−Φ)exp[−exp(εj​−Φ)]dεj​,(12)
整理可得概率公式为:pj=Pr(Uj>Uk,∀k≠j)=exp(Vj)∑kexp(Vk),(13)p_j=Pr(U_j>U_k,\forall k\neq j)=\frac{exp(V_j)}{\sum_k exp(V_k)},\tag{13}pj​=Pr(Uj​>Uk​,∀k=j)=∑k​exp(Vk​)exp(Vj​)​,(13)将 Vj=−θcjV_j = -\theta c_jVj​=−θcj​代入公式 (13),即得到公式 (8)。

相关内容

热门资讯

linux入门---制作进度条 了解缓冲区 我们首先来看看下面的操作: 我们首先创建了一个文件并在这个文件里面添加了...
C++ 机房预约系统(六):学... 8、 学生模块 8.1 学生子菜单、登录和注销 实现步骤: 在Student.cpp的...
A.机器学习入门算法(三):基... 机器学习算法(三):K近邻(k-nearest neigh...
数字温湿度传感器DHT11模块... 模块实例https://blog.csdn.net/qq_38393591/article/deta...
有限元三角形单元的等效节点力 文章目录前言一、重新复习一下有限元三角形单元的理论1、三角形单元的形函数(Nÿ...
Redis 所有支持的数据结构... Redis 是一种开源的基于键值对存储的 NoSQL 数据库,支持多种数据结构。以下是...
win下pytorch安装—c... 安装目录一、cuda安装1.1、cuda版本选择1.2、下载安装二、cudnn安装三、pytorch...
MySQL基础-多表查询 文章目录MySQL基础-多表查询一、案例及引入1、基础概念2、笛卡尔积的理解二、多表查询的分类1、等...
keil调试专题篇 调试的前提是需要连接调试器比如STLINK。 然后点击菜单或者快捷图标均可进入调试模式。 如果前面...
MATLAB | 全网最详细网... 一篇超超超长,超超超全面网络图绘制教程,本篇基本能讲清楚所有绘制要点&#...
IHome主页 - 让你的浏览... 随着互联网的发展,人们越来越离不开浏览器了。每天上班、学习、娱乐,浏览器...
TCP 协议 一、TCP 协议概念 TCP即传输控制协议(Transmission Control ...
营业执照的经营范围有哪些 营业执照的经营范围有哪些 经营范围是指企业可以从事的生产经营与服务项目,是进行公司注册...
C++ 可变体(variant... 一、可变体(variant) 基础用法 Union的问题: 无法知道当前使用的类型是什...
血压计语音芯片,电子医疗设备声... 语音电子血压计是带有语音提示功能的电子血压计,测量前至测量结果全程语音播报࿰...
MySQL OCP888题解0... 文章目录1、原题1.1、英文原题1.2、答案2、题目解析2.1、题干解析2.2、选项解析3、知识点3...
【2023-Pytorch-检... (肆十二想说的一些话)Yolo这个系列我们已经更新了大概一年的时间,现在基本的流程也走走通了,包含数...
实战项目:保险行业用户分类 这里写目录标题1、项目介绍1.1 行业背景1.2 数据介绍2、代码实现导入数据探索数据处理列标签名异...
记录--我在前端干工地(thr... 这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 前段时间接触了Th...
43 openEuler搭建A... 文章目录43 openEuler搭建Apache服务器-配置文件说明和管理模块43.1 配置文件说明...