Yolov8详解与实战
迪丽瓦拉
2025-05-29 16:32:55
0

文章目录

  • 摘要
  • 模型详解
    • C2F模块
    • Loss
    • head部分
  • 模型实战
    • 训练COCO数据集
      • 下载数据集
    • COCO转yolo格式数据集(适用V4,V5,V6,V7,V8)
      • 配置yolov8环境
      • 训练
      • 测试
    • 训练自定义数据集
      • Labelme数据集

摘要

YOLOv8 是 ultralytics 公司在 2023 年 1月 10 号开源的 YOLOv5 的下一个重大更新版本,目前支持图像分类、物体检测和实例分割任务,鉴于Yolov5的良好表现,Yolov8在还没有开源时就收到了用户的广泛关注。yolov8的整体架构如下:
在这里插入图片描述

Yolov8的改进之处有以下几个地方:

  • Backbone:使用的依旧是CSP的思想,将YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块;
  • PAN-FPN:YOLOv8依旧使用了PAN的思想,不同的是YOLOv8将YOLOv5中PAN-FPN上采样阶段中的卷积结构删除了,同时也将C3模块替换为了C2f模块;
  • Decoupled-Head:这一点源自YOLOX;分类和回归两个任务的head不再共享参数,YoloV8也借鉴了这样的head设计。
  • Anchor-Free:YOLOv8抛弃了以往的Anchor-Base,使用了Anchor-Free的思想;
  • 损失函数:YOLOv8使用VFL Loss作为分类损失,使用DFL Loss+CIOU Loss作为分类损失;
  • 样本匹配:YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner匹配方式。

yolov8是个模型簇,从小到大包括:yolov8n、yolov8s、yolov8m、yolov8l、yolov8x等。模型参数、运行速度、参数量等详见下表:
在这里插入图片描述
对比yolov5,如下表:
在这里插入图片描述
mAP和参数量都上升了不少,具体的感受还是要亲自实践一番。

这篇文章首先对YoloV8做详细的讲解,然后实现对COCO数据集的训练和测试,最后,实现自定义数据集的训练和测试。
希望能帮助到朋友们!

分割的结果
在这里插入图片描述
分类的结果

在这里插入图片描述

模型详解

C2F模块

yolov8将yolov5中的C3模块换成了C2F模型,我们先了解一下C3模块,如图:
在这里插入图片描述
C3模块,其主要是借助CSPNet提取分流的思想,同时结合残差结构的思想,设计了所谓的C3 Block,这里的CSP主分支梯度模块为BottleNeck模块,堆叠的个数由参数n来进行控制,不同的模型,n的个数也不相同。C3的pytorch代码如下:

class C3(nn.Module):# CSP Bottleneck with 3 convolutionsdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansionsuper().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))def forward(self, x):return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))

接下来,我们一起学习C2F模块,先经过一个Conv,然后使用chunk函数将out平均拆分成两个向量,然后保存到list中,将后半部分输入到Bottleneck Block里面,Bottleneck Block里面有n个Bottleneck,将每个Bottleneck的输出都追加list中,有n个,所以拼接之后的out等于0.5✖(n+2)。然后经过一个Conv输出,所以输出为h×w×c_out。如下图:

在这里插入图片描述

如果还是比较难懂,我将具体的数据代入图中,得出下图:
在这里插入图片描述

Loss

对于YOLOv8,其分类损失为VFL Loss,其回归损失为CIOU Loss+DFL的形式,这里Reg_max默认为16。

VFL主要改进是提出了非对称的加权操作,FL和QFL都是对称的。而非对称加权的思想来源于论文PISA,该论文指出首先正负样本有不平衡问题,即使在正样本中也存在不等权问题,因为mAP的计算是主正样本。

在这里插入图片描述

q是label,正样本时候q为bbox和gt的IoU,负样本时候q=0,当为正样本时候其实没有采用FL,而是普通的BCE,只不过多了一个自适应IoU加权,用于突出主样本。而为负样本时候就是标准的FL了。可以明显发现VFL比QFL更加简单,主要特点是正负样本非对称加权、突出正样本为主样本。

针对这里的DFL(Distribution Focal Loss),其主要是将框的位置建模成一个 general distribution,让网络快速的聚焦于和目标位置距离近的位置的分布。
在这里插入图片描述

DFL 能够让网络更快地聚焦于目标 y 附近的值,增大它们的概率;

DFL的含义是以交叉熵的形式去优化与标签y最接近的一左一右2个位置的概率,从而让网络更快的聚焦到目标位置的邻近区域的分布;也就是说学出来的分布理论上是在真实浮点坐标的附近,并且以线性插值的模式得到距离左右整数坐标的权重。

head部分

相对于YOLOv5,YOLOv8将Head里面C3模块替换为了C2f,将上采样之前的1×1卷积去除了,将Backbone不同阶段输出的特征直接送入了上采样操作。通过下图对比可以看出差别:
在这里插入图片描述

在这里插入图片描述

YOLOv8则是使用了Decoupled-Head,同时由于使用了DFL 的思想,因此回归头的通道数也变成了4*reg_max的形式:
在这里插入图片描述

模型实战

训练COCO数据集

本次使用2017版本的COCO数据集作为例子,演示如何使用YoloV8训练和预测。

下载数据集

Images:

  • 2017 Train images [118K/18GB] :http://images.cocodataset.org/zips/train2017.zip
  • 2017 Val images [5K/1GB]:http://images.cocodataset.org/zips/val2017.zip
  • 2017 Test images [41K/6GB]:http://images.cocodataset.org/zips/unlabeled2017.zip

Annotations:

  • 2017 annotations_trainval2017 [241MB]:http://images.cocodataset.org/annotations/annotations_trainval2017.zip

COCO转yolo格式数据集(适用V4,V5,V6,V7,V8)

最初的研究论文中,COCO中有91个对象类别。然而,在2014年的第一次发布中,仅发布了80个标记和分割图像的对象类别。2014年发布之后,2017年发布了后续版本。详细的类别如下:

IDOBJECT (PAPER)OBJECT (2014 REL.)OBJECT (2017 REL.)SUPER CATEGORY
1personpersonpersonperson
2bicyclebicyclebicyclevehicle
3carcarcarvehicle
4motorcyclemotorcyclemotorcyclevehicle
5airplaneairplaneairplanevehicle
6busbusbusvehicle
7traintraintrainvehicle
8trucktrucktruckvehicle
9boatboatboatvehicle
10trafficlighttraffic lighttraffic lightoutdoor
11fire hydrantfire hydrantfire hydrantoutdoor
12streetsign--
13stop signstop signstop signoutdoor
14parking meterparking meterparking meteroutdoor
15benchbenchbenchoutdoor
16birdbirdbirdanimal
17catcatcatanimal
18dogdogdoganimal
19horsehorsehorseanimal
20sheepsheepsheepanimal
21cowcowcowanimal
22elephantelephantelephantanimal
23bearbearbearanimal
24zebrazebrazebraanimal
25giraffegiraffegiraffeanimal
26hat--accessory
27backpackbackpackbackpackaccessory
28umbrellaumbrellaumbrellaaccessory
29shoe--accessory
30eye glasses--accessory
31handbaghandbaghandbagaccessory
32tietietieaccessory
33suitcasesuitcasesuitcaseaccessory
34frisbeefrisbeefrisbeesports
35skisskisskissports
36snowboardsnowboardsnowboardsports
37sports ballsports ballsports ballsports
38kitekitekitesports
39baseball batbaseball batbaseball batsports
40baseball glovebaseball glovebaseball glovesports
41skateboardskateboardskateboardsports
42surfboardsurfboardsurfboardsports
43tennis rackettennis rackettennis racketsports
44bottlebottlebottlekitchen
45plate--kitchen
46wine glasswine glasswine glasskitchen
47cupcupcupkitchen
48forkforkforkkitchen
49knifeknifeknifekitchen
50spoonspoonspoonkitchen
51bowlbowlbowlkitchen
52bananabananabananafood
53appleappleapplefood
54sandwichsandwichsandwichfood
55orangeorangeorangefood
56broccolibroccolibroccolifood
57carrotcarrotcarrotfood
58hot doghot doghot dogfood
59pizzapizzapizzafood
60donutdonutdonutfood
61cakecakecakefood
62chairchairchairfurniture
63couchcouchcouchfurniture
64potted plantpotted plantpotted plantfurniture
65bedbedbedfurniture
66mirror--furniture
67dining tabledining tabledining tablefurniture
68window--furniture
69desk--furniture
70toilettoilettoiletfurniture
71door--furniture
72tvtvtvelectronic
73laptoplaptoplaptopelectronic
74mousemousemouseelectronic
75remoteremoteremoteelectronic
76keyboardkeyboardkeyboardelectronic
77cell phonecell phonecell phoneelectronic
78microwavemicrowavemicrowaveappliance
79ovenovenovenappliance
80toastertoastertoasterappliance
81sinksinksinkappliance
82refrigeratorrefrigeratorrefrigeratorappliance
83blender--appliance
84bookbookbookindoor
85clockclockclockindoor
86vasevasevaseindoor
87scissorsscissorsscissorsindoor
88teddy bearteddy bearteddy bearindoor
89hair drierhair drierhair drierindoor
90toothbrushtoothbrushtoothbrushindoor
91hair brush--indoor

可以看到,2014年和2017年发布的对象列表是相同的,它们是论文中最初91个对象类别中的80个对象。所以在转换的时候,要重新对类别做映射,映射函数如下:

def coco91_to_coco80_class():  # converts 80-index (val2014) to 91-index (paper)# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')# x1 = [list(a[i] == b).index(True) + 1 for i in range(80)]  # darknet to coco# x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)]  # coco to darknetx = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, None, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, None, 24, 25, None,None, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, None, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,51, 52, 53, 54, 55, 56, 57, 58, 59, None, 60, None, None, 61, None, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,None, 73, 74, 75, 76, 77, 78, 79, None]return x

接下来,开始格式转换,工程的目录如下:
在这里插入图片描述

  • coco:存放解压后的数据集。
    -out:保存输出结果。
    -coco2yolo.py:转换脚本。

转换代码如下:

import json
import glob
import os
import shutil
from pathlib import Path
import numpy as np
from tqdm import tqdmdef make_folders(path='../out/'):# Create foldersif os.path.exists(path):shutil.rmtree(path)  # delete output folderos.makedirs(path)  # make new output folderos.makedirs(path + os.sep + 'labels')  # make new labels folderos.makedirs(path + os.sep + 'images')  # make new labels folderreturn pathdef convert_coco_json(json_dir='./coco/annotations_trainval2017/annotations/'):jsons = glob.glob(json_dir + '*.json')coco80 = coco91_to_coco80_class()# Import jsonfor json_file in sorted(jsons):fn = 'out/labels/%s/' % Path(json_file).stem.replace('instances_', '')  # folder namefn_images = 'out/images/%s/' % Path(json_file).stem.replace('instances_', '')  # folder nameos.makedirs(fn,exist_ok=True)os.makedirs(fn_images,exist_ok=True)with open(json_file) as f:data = json.load(f)print(fn)# Create image dictimages = {'%g' % x['id']: x for x in data['images']}# Write labels filefor x in tqdm(data['annotations'], desc='Annotations %s' % json_file):if x['iscrowd']:continueimg = images['%g' % x['image_id']]h, w, f = img['height'], img['width'], img['file_name']file_path='coco/'+fn.split('/')[-2]+"/"+f# The Labelbox bounding box format is [top left x, top left y, width, height]box = np.array(x['bbox'], dtype=np.float64)box[:2] += box[2:] / 2  # xy top-left corner to centerbox[[0, 2]] /= w  # normalize xbox[[1, 3]] /= h  # normalize yif (box[2] > 0.) and (box[3] > 0.):  # if w > 0 and h > 0with open(fn + Path(f).stem + '.txt', 'a') as file:file.write('%g %.6f %.6f %.6f %.6f\n' % (coco80[x['category_id'] - 1], *box))file_path_t=fn_images+fprint(file_path,file_path_t)shutil.copy(file_path,file_path_t)def coco91_to_coco80_class():  # converts 80-index (val2014) to 91-index (paper)# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')# x1 = [list(a[i] == b).index(True) + 1 for i in range(80)]  # darknet to coco# x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)]  # coco to darknetx = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, None, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, None, 24, 25, None,None, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, None, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,51, 52, 53, 54, 55, 56, 57, 58, 59, None, 60, None, None, 61, None, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,None, 73, 74, 75, 76, 77, 78, 79, None]return xconvert_coco_json()

开始运行:
在这里插入图片描述

转换完成后,验证转换的结果:

import cv2
import osdef draw_box_in_single_image(image_path, txt_path):# 读取图像image = cv2.imread(image_path)# 读取txt文件信息def read_list(txt_path):pos = []with open(txt_path, 'r') as file_to_read:while True:lines = file_to_read.readline()  # 整行读取数据if not lines:break# 将整行数据分割处理,如果分割符是空格,括号里就不用传入参数,如果是逗号, 则传入‘,'字符。p_tmp = [float(i) for i in lines.split(' ')]pos.append(p_tmp)  # 添加新读取的数据# Efield.append(E_tmp)passreturn pos# txt转换为boxdef convert(size, box):xmin = (box[1]-box[3]/2.)*size[1]xmax = (box[1]+box[3]/2.)*size[1]ymin = (box[2]-box[4]/2.)*size[0]ymax = (box[2]+box[4]/2.)*size[0]box = (int(xmin), int(ymin), int(xmax), int(ymax))return boxpos = read_list(txt_path)print(pos)tl = int((image.shape[0]+image.shape[1])/2)lf = max(tl-1,1)for i in range(len(pos)):label = str(int(pos[i][0]))print('label is '+label)box = convert(image.shape, pos[i])image = cv2.rectangle(image,(box[0], box[1]),(box[2],box[3]),(0,0,255),2)cv2.putText(image,label,(box[0],box[1]-2), 0, 1, [0,0,255], thickness=2, lineType=cv2.LINE_AA)passif pos:cv2.imwrite('./Data/see_images/{}.png'.format(image_path.split('\\')[-1][:-4]), image)else:print('None')img_folder = "./out/images/val2017"
img_list = os.listdir(img_folder)
img_list.sort()label_folder = "./out/labels/val2017"
label_list = os.listdir(label_folder)
label_list.sort()
if not os.path.exists('./Data/see_images'):os.makedirs('./Data/see_images')
for i in range(len(img_list)):image_path = img_folder + "\\" + img_list[i]txt_path = label_folder + "\\" + label_list[i]draw_box_in_single_image(image_path, txt_path)

结果展示:
在这里插入图片描述

配置yolov8环境

可以直接安装requirements.txt里面所有的库文件,执行安装命令:

pip install -r requirements.txt

如果不想安装这么多库文件,在运行的时候,查看缺少哪个库,就安装哪个库,比如我的环境:

pip install thop

我的本地只缺少了这个库文件。

训练

下载代码:https://github.com/ultralytics/ultralytics,通过下载的方式可以下载到源码,这样方便修改。
也可以使用命令:

pip install ultralytics

如果仅仅是为了使用yolov8,可以使用这种方式安装。

yolov8还支持使用命令的方式,例如:

yolo predict model=yolov8n.pt source="https://ultralytics.com/images/bus.jpg"

接下来,创建训练脚本,可以使用yaml文件创建,例如:

from ultralytics import YOLO# Load a model
model = YOLO("yolov8n.yaml")  # build a new model from scratch

模型文件在ultralytics/models/v8下面,如图:

在这里插入图片描述

也可以使用预训练模型创建。例如:

model = YOLO("yolov8n.pt")  # load a pretrained model (recommended for training)

然后开启训练。

# Use the model
model.train(data="coco128.yaml", epochs=3)  # train the model

数据集的配置文件在:ultralytics/datasets/下面,如图:
在这里插入图片描述
是不是很简单!!!!

接下来,我们配置自己的环境。
第一步 找到ultralytics/datasets/coco.yaml文件。
在这里插入图片描述
然后将其复制到根目录
在这里插入图片描述
将里面的路径修改为:

# Ultralytics YOLO 🚀, GPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco  ← downloads here (20.1 GB)# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]train: ./coco/images/train2017  # train images (relative to 'path') 118287 images
val: ./coco/images/val2017  # val images (relative to 'path') 5000 images
test: test-dev2017.txt  # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794

关于数据集的路径,大家可以自行尝试,我经过多次尝试发现,YoloV8会自行添加datasets这个文件,所以设置./coco/images/train2017,则实际路径是datasets/coco/images/train2017
第二步 新建train.py脚本。

from ultralytics import YOLO# 加载模型
model = YOLO("ultralytics/models/v8/yolov8n.yaml")  # 从头开始构建新模型# Use the model
results = model.train(data="coco.yaml", epochs=3,device='3')  # 训练模型

然后,点击train.py可以运行了。
如果设置多卡,可以在device中设置,例如我使用四张卡,可以设置为:

results = model.train(data="coco.yaml", epochs=3,device='0,1,2,3')  # 训练模型

在这里插入图片描述
第三步 修改参数,在ultralytics/yolo/cfg/default.yaml文件中查看。例如:

# Train settings -------------------------------------------------------------------------------------------------------
model:  # path to model file, i.e. yolov8n.pt, yolov8n.yaml
data:  # path to data file, i.e. coco128.yaml
epochs: 100  # number of epochs to train for
patience: 50  # epochs to wait for no observable improvement for early stopping of training
batch: 16  # number of images per batch (-1 for AutoBatch)
imgsz: 640  # size of input images as integer or w,h
save: True  # save train checkpoints and predict results
save_period: -1 # Save checkpoint every x epochs (disabled if < 1)
cache: False  # True/ram, disk or False. Use cache for data loading
device:  # device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
workers: 8  # number of worker threads for data loading (per RANK if DDP)
project:  # project name
name:  # experiment name, results saved to 'project/name' directory
exist_ok: False  # whether to overwrite existing experiment
pretrained: False  # whether to use a pretrained model
optimizer: SGD  # optimizer to use, choices=['SGD', 'Adam', 'AdamW', 'RMSProp']
verbose: True  # whether to print verbose output
seed: 0  # random seed for reproducibility
deterministic: True  # whether to enable deterministic mode
single_cls: False  # train multi-class data as single-class
image_weights: False  # use weighted image selection for training
rect: False  # support rectangular training if mode='train', support rectangular evaluation if mode='val'
cos_lr: False  # use cosine learning rate scheduler
close_mosaic: 10  # disable mosaic augmentation for final 10 epochs
resume: False  # resume training from last checkpoint

上面是训练过程中常用的参数,我们调用yolo函数可以自行修改。
等待测试完成后,就可以看到结果,如下图:

在这里插入图片描述

测试

新建测试脚本test.py.

from ultralytics import YOLO# Load a model
model = YOLO("runs/detect/train11/weights/best.pt")  # load a pretrained model (recommended for training)results = model.predict(source="ultralytics/assets",device='3')  # predict on an image
print(results)

这个results保存了所有的结果。如下图:
在这里插入图片描述
predict的参数也可以在ultralytics/yolo/cfg/default.yaml文件中查看。例如:

# Prediction settings --------------------------------------------------------------------------------------------------
source:  # source directory for images or videos
show: False  # show results if possible
save_txt: False  # save results as .txt file
save_conf: False  # save results with confidence scores
save_crop: False  # save cropped images with results
hide_labels: False  # hide labels
hide_conf: False  # hide confidence scores
vid_stride: 1  # video frame-rate stride
line_thickness: 3  # bounding box thickness (pixels)
visualize: False  # visualize model features
augment: False  # apply image augmentation to prediction sources
agnostic_nms: False  # class-agnostic NMS
classes:  # filter results by class, i.e. class=0, or class=[0,2,3]
retina_masks: False  # use high-resolution segmentation masks
boxes: True  # Show boxes in segmentation predictions

训练自定义数据集

Labelme数据集

相关内容

热门资讯

linux入门---制作进度条 了解缓冲区 我们首先来看看下面的操作: 我们首先创建了一个文件并在这个文件里面添加了...
C++ 机房预约系统(六):学... 8、 学生模块 8.1 学生子菜单、登录和注销 实现步骤: 在Student.cpp的...
A.机器学习入门算法(三):基... 机器学习算法(三):K近邻(k-nearest neigh...
数字温湿度传感器DHT11模块... 模块实例https://blog.csdn.net/qq_38393591/article/deta...
有限元三角形单元的等效节点力 文章目录前言一、重新复习一下有限元三角形单元的理论1、三角形单元的形函数(Nÿ...
Redis 所有支持的数据结构... Redis 是一种开源的基于键值对存储的 NoSQL 数据库,支持多种数据结构。以下是...
win下pytorch安装—c... 安装目录一、cuda安装1.1、cuda版本选择1.2、下载安装二、cudnn安装三、pytorch...
MySQL基础-多表查询 文章目录MySQL基础-多表查询一、案例及引入1、基础概念2、笛卡尔积的理解二、多表查询的分类1、等...
keil调试专题篇 调试的前提是需要连接调试器比如STLINK。 然后点击菜单或者快捷图标均可进入调试模式。 如果前面...
MATLAB | 全网最详细网... 一篇超超超长,超超超全面网络图绘制教程,本篇基本能讲清楚所有绘制要点&#...
IHome主页 - 让你的浏览... 随着互联网的发展,人们越来越离不开浏览器了。每天上班、学习、娱乐,浏览器...
TCP 协议 一、TCP 协议概念 TCP即传输控制协议(Transmission Control ...
营业执照的经营范围有哪些 营业执照的经营范围有哪些 经营范围是指企业可以从事的生产经营与服务项目,是进行公司注册...
C++ 可变体(variant... 一、可变体(variant) 基础用法 Union的问题: 无法知道当前使用的类型是什...
血压计语音芯片,电子医疗设备声... 语音电子血压计是带有语音提示功能的电子血压计,测量前至测量结果全程语音播报࿰...
MySQL OCP888题解0... 文章目录1、原题1.1、英文原题1.2、答案2、题目解析2.1、题干解析2.2、选项解析3、知识点3...
【2023-Pytorch-检... (肆十二想说的一些话)Yolo这个系列我们已经更新了大概一年的时间,现在基本的流程也走走通了,包含数...
实战项目:保险行业用户分类 这里写目录标题1、项目介绍1.1 行业背景1.2 数据介绍2、代码实现导入数据探索数据处理列标签名异...
记录--我在前端干工地(thr... 这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 前段时间接触了Th...
43 openEuler搭建A... 文章目录43 openEuler搭建Apache服务器-配置文件说明和管理模块43.1 配置文件说明...