机器学习入门(六)神经网络初识
admin
2024-05-23 09:28:01
0

目录

一、模型解释

1.1 用人脑解释

1.2 用模型解释 

二、通过异或门的神经网络理解偏置量、神经网络的传播

2.1 与门的神经网络表示

2.2 或门的神经网络表示 

2.3 异或门的神经网络表示 

三、多物体分类 


一、模型解释

1.1 用人脑解释

        神经网络是模拟人的神经元,通过输入电化学信号(Input:Dendrite)经过细胞核(Dealing:Nucleus)处理得到结果(Output:Axon)传给下一个神经元(下一个输入)。

1.2 用模型解释 

        这个相比于人脑神经元系统:我们拿肿瘤分类举例

        偏置单元(bias unit):x_{0}=1

        待训练参数:\theta_{1},\theta_{2},\theta_{3},\theta_{4}

        输入(Input):x_{1},x_{2},x_{3}

        处理函数(Dealing):激活函数,逻辑回归的激活函数为Sigmoid函数

g(z) = \frac{1}{1+e^{-z}} \ \ \ z=\theta^{T}x

        输出(Output):根据处理函数处理出的值和判断阈值确定分类或者输出逻辑是或者逻辑否。

        神经网络一般有三层:分别是输入层、隐藏层和输出层。

        我们定义几个符号:

        a_{i}^{(j)}:是第j层的第i个激活单元 

        \Theta ^{(j)}:控制从层j到层j+1的函数映射的权重矩阵
        且一般每新的一个隐藏层会多一个隐藏层,如果用s_{j}表示在j层的单元数量,s_{j+1}表示在j+1层的单元数量,那么\Theta ^{(j)}的维度为s_{j+1} \times (s_{j}+1)

二、通过异或门的神经网络理解偏置量、神经网络的传播

2.1 与门的神经网络表示

        这里我们选择单层隐藏层的神经网络,假设我们训练出的参数\theta_{1},\theta_{2}为20,20。(怎么训练的不用管,后文会介绍)。偏置量\theta_{0}设置为30。

        我们输入为(x_{1},x_{2})\subset binary(0\ or\ 1),输出为y = x_{1} \ AND \ x_{2}

        神经网络如下:

        ①我们输入一组参数判断是否是与逻辑,比如(x_{1},x_{2}) = (1,0)

        则激活函数h_{\Theta }(x) = g(-30 + 20*1 + 20*0)=g(-10),通过观察Sigmoid函数:

         g(-10)的值低于0.01,远低于0.5,我们认为是约等于0的。也就是不存在与关系。

         ②我们输入一组参数判断是否是与逻辑,比如(x_{1},x_{2}) = (1,1)

        则激活函数h_{\Theta }(x) = g(-30 + 20*1 + 20*1)=g(10),通过观察Sigmoid函数:

         g(10)的值接近于1,我们认为存在与关系。

2.2 或门的神经网络表示 

        这里我们选择单层隐藏层的神经网络,假设我们训练出的参数\theta_{1},\theta_{2}为20,20。(怎么训练的不用管,后文会介绍)。偏置量\theta_{0}设置为-10。

        我们输入为(x_{1},x_{2})\subset binary(0\ or\ 1),输出为y = x_{1} \ OR \ x_{2}

        神经网络如下:

        ①我们输入一组参数判断是否是与逻辑,比如(x_{1},x_{2}) = (1,0)

        则激活函数h_{\Theta }(x) = g(-10 + 20*1 + 20*0)=g(10),通过观察Sigmoid函数:

         g(10)的值接近于1,我们认为存在或关系。

         ②我们输入一组参数判断是否是与逻辑,比如(x_{1},x_{2}) = (1,1)

        则激活函数h_{\Theta }(x) = g(-10 + 20*1 + 20*1)=g(30),通过观察Sigmoid函数:

         g(30)的值接近于1,我们认为存在与关系。

2.3 异或门的神经网络表示 

        我们结合与门和非门,推导出异或门。

        异或门对应两种情况:(1,0),(0,1)

        x_{1} \ AND \ x_{2}对应的情况是(1,1)

        (NOT \ x_{1}) \ AND \ (NOT \ x_{2})对应的情况是(0,0)

        则去掉这两种情况便得到了异或门。我们画出神经网络的结构:

         推导前面已经给出,现不重复推导。

三、多物体分类 

        神经网络也能进行多物体分类,它的输出层为向量,如果确定是该物体则该向量的该分量输出为1,而不是像1,2,3,4之类的。 

相关内容

热门资讯

linux入门---制作进度条 了解缓冲区 我们首先来看看下面的操作: 我们首先创建了一个文件并在这个文件里面添加了...
C++ 机房预约系统(六):学... 8、 学生模块 8.1 学生子菜单、登录和注销 实现步骤: 在Student.cpp的...
A.机器学习入门算法(三):基... 机器学习算法(三):K近邻(k-nearest neigh...
数字温湿度传感器DHT11模块... 模块实例https://blog.csdn.net/qq_38393591/article/deta...
有限元三角形单元的等效节点力 文章目录前言一、重新复习一下有限元三角形单元的理论1、三角形单元的形函数(Nÿ...
Redis 所有支持的数据结构... Redis 是一种开源的基于键值对存储的 NoSQL 数据库,支持多种数据结构。以下是...
win下pytorch安装—c... 安装目录一、cuda安装1.1、cuda版本选择1.2、下载安装二、cudnn安装三、pytorch...
MySQL基础-多表查询 文章目录MySQL基础-多表查询一、案例及引入1、基础概念2、笛卡尔积的理解二、多表查询的分类1、等...
keil调试专题篇 调试的前提是需要连接调试器比如STLINK。 然后点击菜单或者快捷图标均可进入调试模式。 如果前面...
MATLAB | 全网最详细网... 一篇超超超长,超超超全面网络图绘制教程,本篇基本能讲清楚所有绘制要点&#...
IHome主页 - 让你的浏览... 随着互联网的发展,人们越来越离不开浏览器了。每天上班、学习、娱乐,浏览器...
TCP 协议 一、TCP 协议概念 TCP即传输控制协议(Transmission Control ...
营业执照的经营范围有哪些 营业执照的经营范围有哪些 经营范围是指企业可以从事的生产经营与服务项目,是进行公司注册...
C++ 可变体(variant... 一、可变体(variant) 基础用法 Union的问题: 无法知道当前使用的类型是什...
血压计语音芯片,电子医疗设备声... 语音电子血压计是带有语音提示功能的电子血压计,测量前至测量结果全程语音播报࿰...
MySQL OCP888题解0... 文章目录1、原题1.1、英文原题1.2、答案2、题目解析2.1、题干解析2.2、选项解析3、知识点3...
【2023-Pytorch-检... (肆十二想说的一些话)Yolo这个系列我们已经更新了大概一年的时间,现在基本的流程也走走通了,包含数...
实战项目:保险行业用户分类 这里写目录标题1、项目介绍1.1 行业背景1.2 数据介绍2、代码实现导入数据探索数据处理列标签名异...
记录--我在前端干工地(thr... 这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 前段时间接触了Th...
43 openEuler搭建A... 文章目录43 openEuler搭建Apache服务器-配置文件说明和管理模块43.1 配置文件说明...