众所周知,拉普拉斯变换可以将时域函数x(t)x(t)x(t)转换到频域内X(s)X(s)X(s):
x(t)⟹X(s),orX(s)=L{x(t)}x(t) \Longrightarrow X(s), \qquad or \qquad X(s) = \mathcal{L} \left\lbrace x(t) \right\rbrace x(t)⟹X(s),orX(s)=L{x(t)}但当我们知道了输出信号的拉氏变换X(s)X(s)X(s)后,如何能快速得到其对应的时域形式呢?
一种常用的方法是因式分解,将X(s)X(s)X(s)分解为若干简单分式加和的形式,这些简单分式简单到可以直接写出其对应的时域形式。如:
X(s)=s+2s2+4s+3=s+2(s+1)(s+3)=12[1s+1+1s+3]\begin{aligned} X(s) &= \frac{s+2}{s^2 + 4s + 3} \\ &= \frac{s+2}{\left( s+1 \right) \left( s+3 \right)} \\ &= \frac{1}{2} \left[ \frac{1}{s+1} + \frac{1}{s+3} \right] \end{aligned} X(s)=s2+4s+3s+2=(s+1)(s+3)s+2=21[s+11+s+31]则可以立即写出其时域形式
x(t)=L−1{X(s)}=12e−t+12e−3tx(t) = \mathcal{L}^{-1} \left\lbrace X(s) \right\rbrace = \frac{1}{2} e^{-t} + \frac{1}{2} e^{-3t} x(t)=L−1{X(s)}=21e−t+21e−3t因式分解的过程可以用留数定理来做。设
X(s)=s+2s2+4s+3=s+2(s+1)(s+3)=As+1+Bs+3=A(s+3)+B(s+1)(s+1)(s+3)\begin{aligned} X(s) &= \frac{s+2}{s^2 + 4s + 3} \\ &= \frac{s+2}{\left( s+1 \right) \left( s+3 \right)} \\ &= \frac{A}{s+1} + \frac{B}{s+3} \\ &= \frac{A\left( s+3 \right) + B \left( s+1 \right)}{\left( s+1 \right) \left( s+3 \right)} \end{aligned} X(s)=s2+4s+3s+2=(s+1)(s+3)s+2=s+1A+s+3B=(s+1)(s+3)A(s+3)+B(s+1)则A(s+3)+B(s+1)=s+2A\left( s+3 \right) + B \left( s+1 \right) = s+2 A(s+3)+B(s+1)=s+2留数定理的原理是,依次把X(s)X(s)X(s)的根代入,以求得A,BA, BA,B:
1) 当s=−1s=-1s=−1时,A(−1+3)+B(−1+1)=−1+2A\left( -1+3 \right) + B \left( -1+1 \right) = -1+2A(−1+3)+B(−1+1)=−1+2得到A=12A = \frac{1}{2}A=21;
2) 当s=−3s=-3s=−3时,A(−3+3)+B(−3+1)=−3+2A\left( -3+3 \right) + B \left( -3+1 \right) = -3+2A(−3+3)+B(−3+1)=−3+2得到B=12B = \frac{1}{2}B=21。
这种方法的缺点很明显:因式分解的过程冗长复杂,系数A,BA, BA,B的求解繁琐。
幸运的是,笔者在这里列出3个公式,可以解决所有的由复数域向时域转变的问题,甚至只需要记其中一个即可。
设X(s)=A(s)B(s)X(s) = \frac{A(s)}{B(s)}X(s)=B(s)A(s)。
当B(s)=(s−s1)(s−s2)⋯(s−sn)B(s) = (s-s_1) (s-s_2) \cdots (s - s_n)B(s)=(s−s1)(s−s2)⋯(s−sn)时,共nnn个极点,且每个极点都不同,且没有重根。则时域函数为
x(t)=∑k=1nA(s)B′(sk)eskt(1)x(t) = \sum _{k=1}^n \frac{A(s)}{B' \left( s_k \right) } e^{s_k t} \tag{1} x(t)=k=1∑nB′(sk)A(s)eskt(1)举例:对于
X(s)=s+2s2+5s+4=s+2(s+4)(s+1)X(s) = \frac{s+2}{s^2 + 5s + 4} = \frac{s+2}{(s+4)(s+1)} X(s)=s2+5s+4s+2=(s+4)(s+1)s+2可见A(s)=s+2,B(s)=(s+4)(s+1)A(s) = s+2, \quad B(s) = (s+4)(s+1)A(s)=s+2,B(s)=(s+4)(s+1),两个极点s1=−4,s2=−1s_1 = -4, s_2 = -1s1=−4,s2=−1。代入式(1):
x(t)=∑k=1nA(s)B′(sk)eskt=A(s1)B′(s1)es1t+A(s2)B′(s2)es2t=s1+22s1+5es1t+s2+22s2+5es2t=23e−4t+13e−t\begin{aligned} x(t) &= \sum _{k=1}^n \frac{A(s)}{B' \left( s_k \right) } e^{s_k t} \\ &= \frac{A(s_1)}{B' \left( s_1 \right) } e^{s_1 t} + \frac{A(s_2)}{B' \left( s_2 \right) } e^{s_2 t} \\ &= \frac{s_1 + 2}{2s_1 + 5} e^{s_1 t} + \frac{s_2 + 2}{2s_2 + 5} e^{s_2 t} \\ &= \frac{2}{3} e^{-4t} + \frac{1}{3} e^{-t} \end{aligned} x(t)=k=1∑nB′(sk)A(s)eskt=B′(s1)A(s1)es1t+B′(s2)A(s2)es2t=2s1+5s1+2es1t+2s2+5s2+2es2t=32e−4t+31e−t
具有如下形式
X(s)=A(s)sB(s)X(s) = \frac{A(s)}{s B(s)} X(s)=sB(s)A(s)则时域为
x(t)=A(0)B(0)+∑k=1nA(sk)skB′(sk)eskt(2)x(t) = \frac{A(0)}{B(0)} + \sum _{k=1}^n \frac{A \left( s_k \right)}{s_k B' \left( s_k \right)} e^{s_k t} \tag{2} x(t)=B(0)A(0)+k=1∑nskB′(sk)A(sk)eskt(2)举例:X(s)=100s(s2+10s+100)=A(s)sB(s)X(s) = \frac{100}{s \left( s^2 + 10s + 100 \right)} = \frac{A(s)}{s B(s)} X(s)=s(s2+10s+100)100=sB(s)A(s)极点为s1,2=−5±53js_{1,2} = -5 \pm 5 \sqrt{3} js1,2=−5±53j。
由于B′(s)=2s+10B'(s) = 2s+10B′(s)=2s+10,故B′(s1)=103j,B′(s2)=−103jB' \left( s_1 \right) = 10 \sqrt{3}j, B' \left( s_2 \right) = -10 \sqrt{3}jB′(s1)=103j,B′(s2)=−103j。代入(2)有
x(t)=A(0)B(0)+∑k=1nA(sk)skB′(sk)eskt=100100+A(s1)s1B′(s1)es1t+A(s2)s2B′(s2)es2t=1+100(−5+53j)⋅103je(−5+53j)t+100(−5−53j)⋅(−103j)e(−5−53j)t=1−23j+3e(−5+53j)t+23j−3e(−5−53j)t=1−23j+3e−5t(cos53t+jsin53t)+23j−3e−5t(cos53t−jsin53t)=1+e−5tcos53t−13e−5tsin53t\begin{aligned} x(t) &= \frac{A(0)}{B(0)} + \sum _{k=1}^n \frac{A \left( s_k \right)}{s_k B' \left( s_k \right)} e^{s_k t} \\ &= \frac{100}{100} + \frac{A \left( s_1 \right)}{s_1 B' \left( s_1 \right)} e^{s_1 t} + \frac{A \left( s_2 \right)}{s_2 B' \left( s_2 \right)} e^{s_2 t} \\ &= 1 + \frac{100}{\left( -5 + 5 \sqrt{3} j \right) \cdot 10 \sqrt{3} j} e^{ \left( -5 + 5 \sqrt{3} j \right) t} + \frac{100}{\left( -5 - 5 \sqrt{3} j \right) \cdot \left( -10 \sqrt{3} j \right)} e^{ \left( -5 - 5 \sqrt{3} j \right) t} \\ &= 1 - \frac{2}{\sqrt{3} j + 3} e^{\left( -5 + 5 \sqrt{3} j \right) t} + \frac{2}{\sqrt{3} j - 3} e^{\left( -5 - 5 \sqrt{3} j \right) t} \\ &= 1 - \frac{2}{\sqrt{3} j + 3} e^{-5t} \left( \cos 5\sqrt{3}t + j \sin 5 \sqrt{3}t \right) + \frac{2}{\sqrt{3} j - 3} e^{-5t} \left( \cos 5\sqrt{3}t - j \sin 5 \sqrt{3}t \right) \\ &= 1 + e^{-5t} \cos 5\sqrt{3}t - \frac{1}{3} e^{-5t} \sin 5 \sqrt{3}t \end{aligned} x(t)=B(0)A(0)+k=1∑nskB′(sk)A(sk)eskt=100100+s1B′(s1)A(s1)es1t+s2B′(s2)A(s2)es2t=1+(−5+53j)⋅103j100e(−5+53j)t+(−5−53j)⋅(−103j)100e(−5−53j)t=1−3j+32e(−5+53j)t+3j−32e(−5−53j)t=1−3j+32e−5t(cos53t+jsin53t)+3j−32e−5t(cos53t−jsin53t)=1+e−5tcos53t−31e−5tsin53t
此时X(s)X(s)X(s)分母为
B(s)=(s−s1)μ1(s−s2)μ2⋯(s−sr)μrB(s) = \left(s - s_1 \right) ^{\mu_1} \left(s - s_2 \right) ^{\mu_2} \cdots \left(s - s_r \right) ^{\mu_r} B(s)=(s−s1)μ1(s−s2)μ2⋯(s−sr)μr即:极点sis_isi的重数为μi\mu_iμi。共rrr个根s1,s2,⋯,srs_1, s_2, \cdots, s_rs1,s2,⋯,sr,且阶数μ1+μ2+⋯+μr=n\mu_1 + \mu_2 + \cdots + \mu_r = nμ1+μ2+⋯+μr=n。
则时域为
x(t)=∑k=1r∑j=1μkAjktμk−j(μk−j)!eskt(3)x(t) = \sum _{k=1}^r \sum _{j=1}^{\mu_k} A_{jk} \frac{t^{\mu_k - j}}{\left( \mu_k - j \right)!} e^{s_k t} \tag{3} x(t)=k=1∑rj=1∑μkAjk(μk−j)!tμk−jeskt(3)其中系数AjkA_{jk}Ajk满足
Ajk=1(j−1)!dj−1dsj−1[(s−sk)μkX(s)]s=sk(4)A_{jk} = \frac{1}{\left( j - 1 \right) !} \frac{d^{j-1}}{ds^{j-1}} \Big[ \left( s -s_k \right) ^{\mu_k} X(s) \Big] _{s = s_k} \tag{4} Ajk=(j−1)!1dsj−1dj−1[(s−sk)μkX(s)]s=sk(4)例:
X(s)=s2(s−1)3(s+1)3X(s) = \frac{s^2}{(s-1)^3 (s+1)^3} X(s)=(s−1)3(s+1)3s2极点s1=1,s2=−1s_1 = 1, s_2 = -1s1=1,s2=−1,其重数分别为μ1=3,μ2=3\mu_1 = 3, \mu_2 = 3μ1=3,μ2=3。代入(3):
x(t)=∑k=1r∑j=1μkAjktμk−j(μk−j)!eskt=A11tμ1−1(μ1−1)!es1t+A21tμ1−2(μ1−2)!es1t+A31tμ1−3(μ1−3)!es1t+A12tμ2−1(μ2−1)!es2t+A22tμ2−2(μ2−2)!es2t+A32tμ2−3(μ2−3)!es2t=12A11t2et+A21tet+A31et+12A12t2e−t+A22te−t+A32e−tx(t) = \sum _{k=1}^r \sum _{j=1}^{\mu_k} A_{jk} \frac{t^{\mu_k - j}}{\left( \mu_k - j \right)!} e^{s_k t} \\ = A_{11} \frac{t^{\mu_1 - 1}}{\left(\mu_1 - 1 \right) !} e^{s_1 t} + A_{21} \frac{t^{\mu_1 - 2}}{\left(\mu_1 - 2 \right) !} e^{s_1 t} + A_{31} \frac{t^{\mu_1 - 3}}{\left(\mu_1 - 3 \right) !} e^{s_1 t} + A_{12} \frac{t^{\mu_2 - 1}}{\left(\mu_2 - 1 \right) !} e^{s_2 t} + A_{22} \frac{t^{\mu_2 - 2}}{\left(\mu_2 - 2 \right) !} e^{s_2 t} + A_{32} \frac{t^{\mu_2 - 3}}{\left(\mu_2 - 3 \right) !} e^{s_2 t} \\ = \frac{1}{2} A_{11} t^2 e^t + A_{21} t e^t + A_{31} e^t + \frac{1}{2} A_{12} t^2 e^{-t} + A_{22} t e^{-t} + A_{32} e^{-t} x(t)=k=1∑rj=1∑μkAjk(μk−j)!tμk−jeskt=A11(μ1−1)!tμ1−1es1t+A21(μ1−2)!tμ1−2es1t+A31(μ1−3)!tμ1−3es1t+A12(μ2−1)!tμ2−1es2t+A22(μ2−2)!tμ2−2es2t+A32(μ2−3)!tμ2−3es2t=21A11t2et+A21tet+A31et+21A12t2e−t+A22te−t+A32e−t下面来算AjkA_{jk}Ajk。
A11=1(1−1)!d1−1ds1−1[(s−s1)μ1X(s)]s=s1=s2(s+1)3∣s=1=18A21=1(2−1)!d2−1ds2−1[(s−s1)μ1X(s)]s=s1=dds[s2(s+1)3]s=1=2s−s2(s+1)4∣s=1=116A31=1(3−1)!d3−1ds3−1[(s−s1)μ1X(s)]s=s1=d2ds2[s2(s+1)3]s=1=s2−4s+1(s+1)5∣s=1=−116A12=1(1−1)!d1−1ds1−1[(s−s2)μ2X(s)]s=s2=s2(s−1)3∣s=−1=−18A22=1(2−1)!d2−1ds2−1[(s−s2)μ2X(s)]s=s2=dds[s2(s−1)3]s=−1=−s2−2s(s−1)4∣s=−1=116A32=1(3−1)!d3−1ds3−1[(s−s2)μ2X(s)]s=s2=d2ds2[s2(s−1)3]s=−1=s2+4s+1(s−1)5∣s=−1=116A_{11} = \frac{1}{\left( 1 - 1 \right) !} \frac{d^{1-1}}{ds^{1-1}} \Big[ \left( s -s_1 \right) ^{\mu_1} X(s) \Big] _{s = s_1} = \frac{s^2}{(s+1)^3} \Big\rvert _{s = 1} = \frac{1}{8} \\ A_{21} = \frac{1}{\left( 2 - 1 \right) !} \frac{d^{2-1}}{ds^{2-1}} \Big[ \left( s -s_1 \right) ^{\mu_1} X(s) \Big] _{s = s_1} = \frac{d}{ds} \left[ \frac{s^2}{(s+1)^3} \right] _{s=1}= \frac{2s-s^2}{(s+1)^4} \Bigg\rvert _{s = 1} = \frac{1}{16} \\ A_{31} = \frac{1}{\left( 3 - 1 \right) !} \frac{d^{3-1}}{ds^{3-1}} \Big[ \left( s -s_1 \right) ^{\mu_1} X(s) \Big] _{s = s_1} = \frac{d^2}{ds^2} \left[ \frac{s^2}{(s+1)^3} \right] _{s=1}= \frac{s^2-4s+1}{(s+1)^5} \Bigg\rvert _{s = 1} = - \frac{1}{16} \\ A_{12} = \frac{1}{\left( 1 - 1 \right) !} \frac{d^{1-1}}{ds^{1-1}} \Big[ \left( s -s_2 \right) ^{\mu_2} X(s) \Big] _{s = s_2} = \frac{s^2}{(s-1)^3} \Bigg\rvert _{s = -1} = - \frac{1}{8} \\ A_{22} = \frac{1}{\left( 2 - 1 \right) !} \frac{d^{2-1}}{ds^{2-1}} \Big[ \left( s -s_2 \right) ^{\mu_2} X(s) \Big] _{s = s_2} = \frac{d}{ds} \left[ \frac{s^2}{(s-1)^3} \right] _{s=-1} = \frac{-s^2-2s}{(s-1)^4} \Bigg\rvert _{s = -1} = \frac{1}{16} \\ A_{32} = \frac{1}{\left( 3 - 1 \right) !} \frac{d^{3-1}}{ds^{3-1}} \Big[ \left( s -s_2 \right) ^{\mu_2} X(s) \Big] _{s = s_2} = \frac{d^2}{ds^2} \left[ \frac{s^2}{(s-1)^3} \right] _{s=-1} = \frac{s^2+4s+1}{(s-1)^5} \Bigg\rvert _{s = -1} = \frac{1}{16} A11=(1−1)!1ds1−1d1−1[(s−s1)μ1X(s)]s=s1=(s+1)3s2s=1=81A21=(2−1)!1ds2−1d2−1[(s−s1)μ1X(s)]s=s1=dsd[(s+1)3s2]s=1=(s+1)42s−s2s=1=161A31=(3−1)!1ds3−1d3−1[(s−s1)μ1X(s)]s=s1=ds2d2[(s+1)3s2]s=1=(s+1)5s2−4s+1s=1=−161A12=(1−1)!1ds1−1d1−1[(s−s2)μ2X(s)]s=s2=(s−1)3s2s=−1=−81A22=(2−1)!1ds2−1d2−1[(s−s2)μ2X(s)]s=s2=dsd[(s−1)3s2]s=−1=(s−1)4−s2−2ss=−1=161A32=(3−1)!1ds3−1d3−1[(s−s2)μ2X(s)]s=s2=ds2d2[(s−1)3s2]s=−1=(s−1)5s2+4s+1s=−1=161故时域为
x(t)=12A11t2et+A21tet+A31et+12A12t2e−t+A22te−t+A32e−t=116t2et+116tet−116et−116t2e−t+116te−t+116e−t\begin{aligned} x(t) &= \frac{1}{2} A_{11} t^2 e^t + A_{21} t e^t + A_{31} e^t + \frac{1}{2} A_{12} t^2 e^{-t} + A_{22} t e^{-t} + A_{32} e^{-t} \\ &= \frac{1}{16} t^2 e^t + \frac{1}{16} t e^t - \frac{1}{16} e^t - \frac{1}{16} t^2 e^{-t} + \frac{1}{16} t e^{-t} + \frac{1}{16} e^{-t} \end{aligned} x(t)=21A11t2et+A21tet+A31et+21A12t2e−t+A22te−t+A32e−t=161t2et+161tet−161et−161t2e−t+161te−t+161e−t
实际上,简便方法中的方法一和方法二,都可以用方法三,即式(3)来解决,前两者只不过是方法三的特殊形式。而方法三本质也是基于留数定理得到的。所以,为了简化记忆,可以只记忆方法三。