构件疲劳断裂时微观形貌特征是什么? ( 轴承常见疲劳失效形式及抗疲劳方法有哪些,你知道吗 )
迪丽瓦拉
2024-10-07 03:10:34
0

本篇文章给大家谈谈 构件疲劳断裂时微观形貌特征是什么? ,以及 轴承常见疲劳失效形式及抗疲劳方法有哪些,你知道吗 对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。今天给各位分享 构件疲劳断裂时微观形貌特征是什么? 的知识,其中也会对 轴承常见疲劳失效形式及抗疲劳方法有哪些,你知道吗 进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

微观形貌上,呈现出河流花样、扇形等特征,裂纹扩展方向通过条纹指示。影响脆性断裂的因素繁多,包括不均匀的三向应力、低温环境、尺寸效应、焊接质量、工作介质和材料组织。为了预防,设计时应确保材料高于脆性转变温度,选择具有高断裂韧性的材料,同时注意结构设计以减少应力集中和优化焊接工艺。而疲劳断裂,

疲劳破坏时一般没有明显的塑性变形,但有如下一些特征:(1)发生疲劳破坏的部位:一是结构的几何不连续处,即应力集中部位;二是存在裂纹类原始缺陷的焊缝部位。(2)疲劳破坏的基本形式有爆破和泄漏两种。(3)疲劳破坏后的整体特征是泄漏或破坏,整体上无塑性变形,属于脆性断裂。(4)疲劳断口的宏观形貌是

韧性断口高倍放大,微观形貌一般为韧窝特征 脆性

脆性疲劳的特征是断裂路径呈放射状扇形,疲劳条带被放射台阶割成短而且平坦的小段。

特征是沿晶断裂、明显的颗粒状断口、显微裂纹、疲劳条纹。1、沿晶断裂:在蠕变断裂的微观断口上,可以看到大量的沿晶断裂,即金属沿晶的断裂,与金属的晶粒方向垂直。这是因为金属在高温下会发生晶粒长大的现象,晶粒之间的界面会变弱,导致沿晶断裂的出现。2、明显的颗粒状断口:在蠕变断裂的微观断口上

宏观特征、微观特征。1、宏观特征:裂纹源在表面有凹槽、缺陷或应力集中的区域;扩展区断面较平坦,疲劳扩展与应力方向相垂直,有明显疲劳弧线;瞬断区有金属滑移痕迹,有些产品瞬断区有放射性条纹并具有剪切唇区。2、微观特征:疲劳断裂典型的特征是出现疲劳辉纹。

构件疲劳断裂时微观形貌特征是什么?

因为其微观组织细小,强度高、极好的强韧性,因此断面平整,呈细瓷状。微观上为所谓准解理加脆性韧窝形貌,断面变形量极小,这就是你看到的断口非常平整的原因。由于具有极高的缺口敏感性,一般疲劳断裂的扩展速度极快,在宏观上,疲劳断口除了源区附近有时可见隐约的疲劳弧线特征以外,绝大部分仍然是一次

【答案】:疲劳断裂是微观裂缝在连续重复荷载作用下不断扩展直至断裂的脆性破坏。断口可能贯穿于母材,可能贯穿于连接焊缝,也可能贯穿于母材及焊缝。特点:出现疲劳断裂时,截面上的应力低于材料的抗拉强度,甚至低于屈服强度。同时,疲劳破坏属于脆性破坏,塑性变形极小,因此是一种没有明显变形的突然破坏,

疲劳断口有什么特点?答:有疲劳源。在形成疲劳裂纹之后,裂纹慢速扩展,形成贝壳状或海滩状条纹。这 种条纹开始时比较密集,以后间距逐渐增大。由于载荷的间断或载荷大小的改变,裂纹经过 多次张开闭合并由于裂纹表面的相互摩擦,形成一条条光亮的弧线,叫做疲劳裂纹前沿线, 这个区域通常称为疲劳裂纹扩展区,

如果截面上都是新的,表面计较亮的印记,说明电机轴实在受到了大的冲击力造成一次性切断,比如说电机满载过载冲击启动。你可以观察轴断处的退刀槽是否过大,也可以将断轴拿去化验确认轴材质是否合理,还有就是如果进行了热处理的话,也可以观察晶体结构,是否热处理导致的脆性导致了轴断裂。

1、发生断裂时,零部件并无明显的宏观塑性变形,断裂前没有明显的预兆,而是突然地破坏。2、通常引起疲劳断裂的应力值很低,常常低于静载时的屈服强度。3、发生疲劳断裂产生的断口处能清楚地显示出裂纹源、扩展和最后断裂三个组成部分。4、疲劳断口有各种型式,取决于载荷的类型,即所受应力为弯曲应力、

疲劳断裂的微观形貌特征:疲劳断口微观形貌的基本特征是,在电子显微镜下观察到的条状花样,通常称为疲劳条痕、疲劳条带、疲劳辉纹等。疲劳辉纹是具有一定间距的、垂直于裂纹扩展方向、明暗相交且互相平行的条状花样。延性疲劳辉纹:是指金属材料疲劳裂纹扩展时,裂纹尖端金属发生较大的塑性变形。疲劳条痕通常

轴疲劳断裂的断口特征

滚动轴承的失效形式有三种:疲劳点蚀,塑性变形和磨损。计算准则:1、对于一般转速的轴承,疲劳点蚀为主要失效形式,以疲劳强度为据进行轴承的寿命计算。2、对于高速轴承,工作表面的过热也会引起失效,因此除需要进行寿命计算外,还应校验其极限转速。3、对于低俗轴承,其失效形式为塑性变形,应进行以不发生

1、滚动轴承的磨损失效:磨损时滚动轴承最常见的一种失效形式。在滚动轴承运转中,滚动体和套圈之间均存在滑动,这些滑动会引起零件接触面的磨损。尤其在轴承中侵入金属粉末、氧化物以及其他硬质颗粒时,则形成严重的磨料磨损,使磨损更为加剧。另外,由于振动和磨料的共同作用,对于处在非旋转状态的滚动轴承

滚动轴承在使用过程中,由于很多原因造成其性能指标达不到使用要求时就产生了失效或损坏.常见的失效形式有疲劳剥落、磨损、塑性变形、腐蚀、烧伤、电腐蚀、保持架损坏等。 一,疲劳剥落 疲劳有许多类型,对于滚动轴承来说主要是指接触疲劳。滚动轴承套圈各滚动体表面在接触应力的反复作用下,其滚动表面金属从

1、接触疲劳失效 接触疲劳失效系指轴承工作表面受到交变应力的作用而产生的材料疲劳失效。接触疲劳失效常见的形式是接触疲劳剥落。接触疲劳剥落发生在轴承工作表面,往往伴随着疲劳裂纹,首先从接触表面以下最大交变切应力处产生,然后扩展到表面形成不同的剥落形状。2、磨损失效 磨损失效系指表面之间的相对滑

轴承常见疲劳失效形式及抗疲劳方法有哪些,你知道吗

滚动轴承在工作中,由于外在或内在因素的影响,使得原有配合间隙改变,精度降低,乃至造成“咬死",称为游隙变化失效。外界因素如过盈量过大,安装不到位,温升引起的膨胀量、瞬时过载等;内在因素如残余奥氏体和残余应力处于不稳定状态等,均是造成游隙变化失效的主要原因。滚动轴承常见失效模式及对策 1.

大量的应用实践和寿命实验都表明,轴承失效多为接触表面疲劳。将疲劳列在轴承六种常见失效模式之首,被列在第六位的断裂在形成过程中也因有疲劳的原因,被称为疲劳断裂。典型的疲劳失效分为次表面起源型和表面起源型。一.次表面起源型疲劳 滚动接触最大接触应力发生在表面下一定深度的某处,在交变应力

滚动轴承的失效形式有点蚀、磨粒磨损、断裂、黏着磨损、塑性变形等,产生原因如下:1、点蚀表现为内外套圈的滚道及滚动体的表面出现凹坑,其原因是轴承过载、装配时配合过紧、内外套圈位置不正和润滑不良等。2、磨粒磨损是滚道表面、滚动体与保持架接触部位发生磨损,其主要原因是滚动轴承内部有研磨物或润滑

轴承的这种失效形式成为疲劳失效。其主要原因是疲劳应力造成的,有时是由于润滑不良或强迫安装所引起。随着滚动轴承的继续运转,损坏逐步增大。因为有脱落的碎片被滚压在其余部分滚道上,并给那里造成局部超载荷而进一步使滚动损坏。轴承运转时,一旦发生疲劳剥落,其振动和噪声将急剧增大。三、滚动轴承的腐蚀

【答案】:滚动轴承的失效形式有:滚动体和座圈滚道的疲劳点蚀、滚动体和座圈滚道的塑性变形,轴承元件的胶合和磨粒磨损。设计计算准则是:对转动轴承,为防止疲劳点蚀,应进行基本额定寿命计算,必要时进行静强度校核,对不转、低速或摆动轴承,为防止塑性变形,应进行静强度计算;对高速重载轴承,为防止胶

滚动轴承的主要失效形式是:1、接触疲劳失效 接触疲劳失效系指轴承工作表面受到交变应力的作用而产生的材料疲劳失效。接触疲劳失效常见的形式是接触疲劳剥落。接触疲劳剥落发生在轴承工作表面,往往伴随着疲劳裂纹,首先从接触表面以下最大交变切应力处产生,然后扩展到表面形成不同的剥落形状。2、磨损失效 磨

腐蚀产生的原因包括轴承内部或润滑剂中含有水、碱、酸等腐蚀物质、轴承在使用中的热量没有及时释放、密封装置失效、轴承使用环境湿度大、清洗、组装、存放不当等。五、蠕动 蠕动是受旋转载荷的轴承套圈,如果选用间隙配合,在配合表面上会发生圆周方向的相对运动,使配合面上产生磨擦、磨损、发热、变形,造

轴承的失效原因和失效的形态是什么?

  轴承的失效原因如下:   一制造因素   1、产品结构设计的影响   产品的结构设计是根据使用性能目标值来确定的,这些目标值如载荷容量、寿命、精度、可靠性、振动、磨损、摩擦力矩等。在设计时,由于各种原因,会造成产品设计与使用的不适用或脱节,甚至偏离了目标值,这种情况很容易造成产品的早期失效。   2、材料品质的影响   轴承工作时,零件滚动表面承受周期性交变载荷或冲击载荷。由于零件之间的接触面积很小,因此,会产生极高的接触应力。在接触应力反复作用下,零件工作表面将产生接触疲劳而导致金属剥落。   就材料本身的品质来讲,其表面缺陷有裂纹、表面夹渣、折叠、结疤、氧化皮和毛刺等,内部缺陷有严重偏析和疏松、显微孔隙、缩孔、气泡、白点、过烧等,这些缺陷都是造成轴承早期疲劳剥落的主要原因。   在材料品质中,另一个主要影响轴承疲劳性能的因素是材料的纯洁度,其具体表现为钢中含氧量的多少及夹杂物的数量多少、大小和分布上。   3、热处理质量的影响   轴承热处理包括正火、退火、渗碳、淬火、回火、附加回火等。其质量直接关系到后续的加工质量及产品的使用性能。   4、加工质量的影响   首先是钢材金属流线的影响。钢材在轧制或锻造过程中,其晶粒沿主变形方向被拉长,形成了所谓的钢材流线(纤维)组织。试验表明,该流线方向平行于套圈工作表面的与垂直的相比,其疲劳寿命可相差2。5倍。其次是磨削变质层。磨削变质层对轴承的疲劳寿命与磨损寿命有很大的影响。变质层的产生使材料表面层的组织结构和应力分布发生变化,导致表面层的硬度下降、烧伤,甚至微裂纹,从而对轴承疲劳寿命产生影响。   受冷热加工条件及质量控制的影响,产品在加工过程中会出现质量不稳定或加工误差,如热加工的材料淬、回火组织达不到工艺要求、硬度不均匀和降低,冷加工的几何精度超差、工作表面的烧伤、机械伤、锈蚀、清洁底低等,会造成轴承零件接触不良、应力集中或承载能力下降,从而对轴承疲劳寿命产生不同程度的影响。   B、使用因素   使用因素主要包括轴承选型、安装、配合、润滑、密封、维护等。   不正确的安装方法很容易造成成轴承损坏或零件局部受力产生应力集中,引起疲劳。过大的配合过盈量容易造成内圈滚道面张力增加及零件抗疲劳能力下降,甚至出现断裂。   润滑不良会引起不正常的摩擦磨损,并产生大量的热量,影响材料组织和润滑剂性能。如果润滑不当,即便选用再好的材料制造,加工精度再高,也起不到提高轴承寿命的效果。   密封不良容易使杂质进入轴承内部,既影响零件之间的正常接触形成疲劳源,又影响润滑或污染润滑剂。   根据疲劳产生的机理和主要影响因素,可以有针对性地提出预防措施。如对表面起源损伤引起的疲劳,可以通过对零件表面进行表面强化处理,对次表面起源型疲劳可以通过改善材料品质等措施。而提高零件加工质量尤其是零件表面质量、提高使用质量、控制杂质流入轴承内部、保证润滑质量等措施对预防和延缓疲劳都有十分重要的意义。   二、表面塑性变形   表面塑性变形主要是指零件表面由于压力作用形成的机械损伤。在接触表面上,当滑动速度比滚动速度小得多的时候会产生表面塑性变形。   表面塑性变形分为一般表面塑性变形和局部表面塑性变形两类。   A、一般表面塑性变形   是由于粗糙表面互相滚动和滑动,同时,使粗糙表面不断产生塑性碰撞所造成,其结果形成了冷轧表面,从外观上看,这种冷轧表面已被辗光,但是,如果辗光现象比较严重,在冷轧表面上容易形成大量浅裂纹,浅裂纹进一步发展可能(在粗糙表面区域区)导致显微剥落,但这种剥落很浅,只有几个微米,它能够覆盖很宽的接触表面.   根据弹性流体动压润滑理论,一般表面塑性变形产生的原因是由于两个粗糙表面直接接触,其间没有形成承载的弹性流体动压润滑膜.因此,当油膜润滑参数小于一定值时,将产生的一般表面塑性变形.一般油膜润滑参数值越小表面塑性变形越严重.   B、局部表面塑性变形   局部表面塑性变形是发生在摩擦表面的原有缺陷附近。最常见的原有缺陷,如压坑(痕)、磕碰伤、擦伤、划伤等。   1、压坑(痕)   压坑(痕)是由于在压力作用下硬质固体物侵入零件表面产生的凹坑(痕)现象。   压坑(痕)的形态特征是:形状和大小不一,有一定深度,压坑(痕)边缘有轻微凸起,边缘较光滑。   硬质固体特的来源是轴承零件在运转中产生的金属颗粒、密封不良造成轴承外部杂质侵入。   压坑(痕)产生的部位主要在零件的工作表面上。   预防压坑(痕)的措施主要有:提高零件的加工精度和轴承的清洁度、改善润滑、提高密封质量等。   2、磕碰伤   磕碰伤是由于两个硬质特体相互撞击形成的凹坑现象。   磕碰伤的形态特征视两物体形状和相互撞击力的不同其形状和大小不一,但有一定深度,在其边缘处常有突起。   磕碰伤主要是操作不当引起的。产生部位可以在零件的所有表面上。   预防磕碰伤的措施主要有:提高操作者的责任心、规范操作、改进产品容器的结构和增加零件的保护措施等。   3、擦伤   擦伤是两个相互接触的运动零件,在较大压力作用下因滑动摩擦产生的金属迁移现象。严重时可能伴随烧伤的出现。   擦伤的形状不确定,有一定长底和宽度,深度一般较浅,并沿滑动(或运动)方向由深而浅。   擦伤可以在产品制造过程中产生也可以在使用过程中产生。   轴承制造成过程中的擦伤预防措施与磕碰伤的预防措施相同。使用中的擦伤预防措施主要是从防止“打滑”方面考虑,改进产品内部结构、提高过盈配合量、调整游隙、改善润滑、保证良好接触状态等。   4、划(拉)伤   划(拉)伤是指硬质和尖锐物体在压力作用下侵入零件表面并产生相对移动后形成的痕迹。   划伤一般呈线型状,有一定深度,宽度比擦伤窄,划伤的伤痕方向是任意的,长度不定。产生部位主要在零件的工作表面和配合表面上。而拉伤只发生在轴承内径(过盈)配合面上,伤痕方向一般与轴线平行,有一定长度、宽度和深度,并成组出现。   划伤可以在轴承制造过程中产生也可在使用中产生。而拉伤只发生在轴承安装拆卸过程中。   预防轴承制造过程中的划伤与预防磕碰伤的措施相同。预防使用中划伤与预防压坑(痕)的措施基本相同。   预防拉伤的措施是严格安装拆卸规程、保证配合面的清洁、安装时在配合面上适当润滑等。   综上所述,预防表面塑性变形的措施是要正确选用轴承、增强材料的耐磨性,保证润滑的有效性、注意安装方法、提高轴承密封装置的密封性等。   三、磨损   在力的作用下,两个相互接触的金属表面相对运动产生摩擦,形成摩擦副。磨擦引起金属消耗或产生残余变形,使金属表面的形状、尺寸、组织或性能发生改变的现象称为磨损。   磨损过程包含有两物体的相互作用、黏着、擦伤、塑性变形、化学反应等几个阶段。其中物体相互作用的程度对磨损的产生和发展起着重要的作用。   磨损的基本形工有:疲劳磨损、黏着磨损、磨料(粒)磨损、微动磨损和腐蚀磨损等。   产生磨损的主要原因:   A、异物通过了密封不良的装置(或密封圈)进入了轴承内部。   B、润滑不当。如润滑油中的杂质未过滤干净、润滑方式不良、润滑剂选用不当、润滑剂变质等。   C、零件接触面上的材料颗粒脱离,   D、锈蚀。如,由于轴承使用温度变化产生的冷凝水、润滑剂中添加剂的腐蚀性特质等原因形成的锈蚀。   实际中多数磨损属于综合性磨损,预防对策应根据磨损的形式和机理分别采取措施。   对于微动磨损,可以采用小游隙或过盈配合来减少使用过程中的微动磨损;可在套圈与滚动体之间采用稀润滑剂润滑或分别包装来减少运输过程的微动磨损;另外,轴承应放在无振动环境下保管,或将轴承内外圈隔离存放可以防止保管过程中产生的微动磨损。   对于黏着磨损可以采取提高加工精度、增强润滑效果等措施来解决。   对于磨料(粒)磨损,可以采用表面强化处理、表面润滑处理(如渗硫、磷化、表面软金属膜涂层等)、改善轴承密封结构、提高零件加工精度、保证润滑油过滤质量、减少制造和使用过程中对表面的损伤等方法来解决。   对于腐蚀磨损,应减少轴承使用环境中腐蚀物质的侵入、对零件表面进行耐腐蚀处理或采用耐腐蚀材料制造产品等手段来解决。另外,还可以从产品结构设计和制造的角度进行改进,如提高零件的加工精度、减少磨削加工中产生的变质层、保证弹性流体动压润滑膜等实现预防磨损的目的。   四、腐蚀   金属与其所处环境中的物质发生化学反应或电化学反应变化所引起的消耗称为腐蚀。   金属腐蚀的形式多种多样,就金属与周围介质作用的性质来分可以分为化学腐蚀和电化学腐蚀两类   化学腐蚀是由于金属与周围介质之间的纯化学作用引起的。其过程中没有电流产生,但有腐蚀物质产生。这种物质一般都覆盖在金属表面上形成一层疏松膜.化学反应形成的腐蚀机理比较简单,主要是物体之间通过接触产生了化学反应,如金属在大气中与水产生的化学反应形成的腐蚀(又称为锈蚀)   电化学腐蚀是由于金属与周围介质之间产生电化学作用引起的。其基本特点是在腐蚀的同时又有电流产生。电化学反应的腐蚀机理主要是微电池效应。   就滚动轴承而言,产生腐蚀的主要原因有:   A、轴承内部或润滑剂中含有水、碱、酸等腐蚀物质   B、轴承在使用中的热量没有及时释放,冷却后形成水分   C、密封装置失效   D、轴承使用环境湿度大   E、清洗、组装、存放不当   腐蚀产生部位:零件各表面都会有。按程度有腐蚀斑点或腐蚀坑(洞),斑点和蚀坑一般呈零星或密集分布,形状不规则,深度不定,颜色有浅灰色、红褐色、灰褐色、黑色。   对于金属材料来说,消除腐蚀是比较困难的,但可以减缓腐蚀的发生,防止轴承与腐蚀物质接触,可以通过合金化,表面改性等方法提高耐腐蚀能力,使得金属表面形成一层稳定致密与基体结合牢固的钝化膜。   六、蠕动   受旋转载荷的轴承套圈,如果选用间隙配合,在配合表面上会发生圆周方向的相对运动,使配合面上产生磨擦、磨损、发热、变形,造成轴承不正常损坏。这种配合面周向的微小滑动称为蠕动或爬行。   蠕动形成的机理是当内圈与轴配合过盈量不足时,在内圈与轴之间的配合面上因受力产生弹性变形而出现微小的间隙,造成内圈与轴旋转时在圆周方向上的不同步、打滑,严重时在压力作用下发生金属滑移。在外圈与壳体也同样会出理类似的情况。   蠕动形貌特征在一些方面具有腐蚀磨损和微动磨损的某些特征。蠕变在形成过程中也有一些非常细小的磨损颗粒脱落并立即局部氧化,生成一种类似铁锈的腐蚀物。其区别主要根据它们的位置和分布来判断,如果零件没有受到腐蚀又出现了褐色锈斑,锈斑的周围常常围绕着一圈碾光区,出现的部位又在轴承的配合表面上,那么可能就是蠕动。发生蠕动的配合面上,或出现镜面状的光亮色,或暗淡色,或咬合状,蠕动部位与零件原表面有明显区别。   在轴承的端面由于轴向压紧力不足。或悬臂轴频繁挠曲,运转一定时间后也会出现蠕动的特征。   产生蠕动的主要原因是内,外圈与轴或轴承座的配合过盈量不足,或载荷方向发生了变化。   预防的措施:采用过盈配合并适当提高过盈量,在采用间隙配合的场合的场合可用黏结剂将两个配合面固定或沿轴(或轴承座)的轴向方向将轴承紧固。   六 烧伤   轴承零件在使用中受到异常高温的影响,又得不到及时冷却,使零件表面组织产生高温回火或二次淬火的现象称为烧伤。   烧伤产生的主要原因是润滑不良、预载荷过大、游隙选择不当、轴承配置不当、滚道表面接触不良、应力过大等因素所致。如:   A、在轴向游动轴承中,如果外圈配合的过紧,不能在外壳孔中移动;   B、轴承工作中运转温度升高,轴的热膨胀引起很大的轴向力,而轴承又无法轴向移动时;   C、由于润滑不充分,或润滑剂选用不合理、质量问题、老化和变质等;   D、内外圈运转温度差大,加上游隙选择不当,外圈膨胀小内圈大呈过盈导致轴承温度急剧升高;   E、轴承承受的载荷过大和载荷分布均匀,形成应力集中;   F、零件表面加工粗糙,造成接触不良或油膜形成困难。   烧伤的形貌特征可以根据零件表面的颜色不同来判断。轴承在使用中由于润滑剂、温度、腐蚀等原因。零件表面会发生变化,颜色主要有淡黄色、黄色、棕红色、紫蓝色及蓝黑色等,其中淡黄色、黄色、棕红色属于变色,若出现紫蓝色或蓝黑色的为烧伤。烧伤容易造成零件表面硬度下降或出现微裂纹。   烧伤产生的部位主要发生在零件的各接触表面上,如圆锥滚子轴承的挡边工作面、滚子端面、应力集中的滚表面等。   烧伤的预防可根据烧伤产生的原因有针对性地采取措施。如正确选用轴承结构和配置、避免轴了砂承受过大的载荷、安装时采用正确的安装方式防止应力集中、保证润滑效果等。   七、 电蚀   电蚀是由电流放电引起,致使轴承零件表面出现电击的伤痕,此种损伤称为电蚀。在两零件接触面间一般存在一层油膜,该油膜一定有的绝缘作用,当有电流通过轴承内部时,在两面三刀零件接触表面形成电压差,当电压差高到足以击穿绝缘层时就会在两零件接触表面处产生火区放电,击穿油膜放电,产生高温,造成局部表面的熔融,形成弧凹状或沟蚀。受到电蚀的零件,其金属表面被局部加热和熔化,在放大镜下观察损伤区域一般呈现斑点、凹坑、密集的小坑,有金属熔融现象,电蚀坑呈现火山喷口状。电蚀会使零件的材料硬度下降,并加快磨损发生速度,也会诱发疲劳剥落。   预防电蚀的措施是在焊接或其他带电体与轴承接触时加强轴承的绝缘或接地保护,防止电荷的聚集并形成高的电位差,避免放电现象产生。防止电流与轴承接触。   八、裂纹和缺损   当轴承零件所承受的应力超出材料的断裂极限应力时,其内部或表面便发生断裂和局部断裂,这种使材料出现不连续或断裂的现象称为裂纹。   在材料表面或表层下有一种貌似毛发的细微裂纹称为发纹。当发纹扩展到一定程度,使得部分材料完全脱离零件基体的现象称为断裂。   裂纹一般呈线状,方向不定,有一定长度和深(宽)度,有尖锐的根部和边缘。裂纹有内部裂纹和表面裂纹之分,也有肉眼可见和不可见两种形式,对于肉眼不可见裂纹需要采用无损检测的方法进行观察。发纹一般呈细线状,方向沿钢材轧制方向断续分布,有一定长度和深度,有时单条有时数条出现。   裂纹产生的原因较为复杂,影响因素很多,如原材料、锻造、冲压折叠、热处理、磨削、局部过大的应力等。发纹形成的原因是钢材在冶炼过程中产生的气泡或夹杂,经轧制变形后存在于材料表层。对于肉眼不可见裂纹需要采用无损检测的方法进行观察。   裂纹的预防措施主要有,在制造方面应控制原材料缺陷如非金属夹杂、表面夹渣、折叠、显微孔隙、缩孔、气泡等。控制加工应力如热处理淬火时产生的内应力(热应力和组织应力)、磨削应力、冲压应力等。在使用方面注意轴承安装过程中的非正常敲(撞)击以及安装不良造成的局部应力过大等。另外,还要保证润滑,增强密封效果,控制外部杂质流入,避免轴承与腐蚀性物质接触等。   九、保持架损坏   当滚动体进入或离开承载区域时,保持架将受到带有一定冲击性质的拉(压)应力作用,尤其是滚子轴承的滚子产生倾斜时所受到的应力会更大。在这种应力的反复作用下,保持架的兜孔、过梁、铆钉会出现变形、磨损、疲劳,甚至断裂现象。另外,不正确的安装方式也会损坏保持架。保持架相对套圈的强度一般较弱(尤其是冲压保持架),如果安装不得当,将安装力直接施加在保持架上,很容易造成保持架变形。冲压保持架制造过程中产生的应力过大也是造成保持架损坏的原因之一。   防止保持架损坏的措施可以从设计、制造、安装方面考虑。保持架在运转中受到的拉(压)应力是无法避免的。但提高保持架的强度可通过适当增加保持架过梁(铆钉)强度来解决。滚子产生倾斜可以通过提高制造和安装质量来解决。改善润滑条件有助于减少磨损。对冲压保持架制造过程中产生的应力可采用振动光饰等方法支除或减少应力。   十、尺寸变化   轴承运转一定时间以后,会出现游隙减小或增大的现象。通过对零件尺寸检测可以发现轴承内、外圈或滚动体直径方向的尺寸发生了变化(增大或减小),影响轴承的正常旋转精度。若没有了游隙,会出现摩擦磨损加剧、工作温度上升、甚至“卡死”等现象。若游隙变大,会出现振动或噪声增大、旋转精度降低、应力集中等情况。轴承内径增大还很可能出现“甩圈”现象。   轴承零件在热处理过程中,保留了一定数量的残佘奥氏体,而奥氏体是一种不稳定相,随着时间或温度的变化,奥氏体将逐步转变为较稳定的马氏体组织,由于马氏体组织的体积大于奥氏体组织,因此,在转变过程中零件的体积将发生涨大。而马氏体组织自身也会产生分解,马氏体分解的结果会出现尺寸收缩的现象。轴承工作温度高对奥氏体的转变和马氏体的分解有促进作用。还有一种情况,零件在内应力释放过程中也会引起尺寸的改变。   从预防或控制零件尺寸稳定性的角度考虑,可以在轴承零件热处理时对不稳定的残余奥氏体组织进行稳定化处理。另外,在使用中应保证轴承的使用温度低于轴承允许的工作温度,以防止尺寸出现较大的变化。   十一、使用不当引起的损坏   轴承使用不当引起的损坏在轴承失效中占有很大的比例。轴承使用不当涉及轴承选型、轴承配置、轴承支承结构、配合、安装、润滑、密封、维护保养等诸多方面。轴承失效与使用不当密不可分。   十二、其他损伤   A、变色   变色是由于轴承在运转过程中因发热引起的表面颜色变化。另外,在温度作用下润滑剂中的部分化学物质、磨损的金属粉末等杂质会黏附在零件表面上也会引起轴承零件颜色变化,这种变色又称污斑。表面颜色一般呈淡黄色、黄色、茶色、棕红色、紫蓝色及蓝黑色等,发热引起的变色一般没有深度。对于使用中的轴承若出现深度变色如紫蓝色或蓝黑色的则有可能形成了烧伤。零件腐蚀也会引起变色,但这类变色有一定深度。   轴承零件在运转过程中,因摩擦会产生大量的热,若润滑不充分或散热条件差,热量得不到及时的冷却或扩散,热量的聚积使轴承温度很快升高,温度升高会使附着在轴承零件表面的油膜产生氧化现象,形成一种浅褐色的氧化制,沉积附着在轴承的表面上。但这种变色并不影响轴承的使用,所以允许存生。当轴承因安装不当(如安装倾斜)或润滑不良等原因使轴承处于一种极不正常的工作状态,引起温度的急速上升,此时轴承的局部温度有可能超过轴承零件的回火温度,甚至更高,并产生严重的变色如蓝黑色或紫蓝色,形成烧伤现象,这种情况的变色轴承就不能再继续使用了。
一、滚动轴承的磨损失效 磨损时滚动轴承最常见的一种失效形式。在滚动轴承运转中,滚动体和套圈之间均存在滑动,这些滑动会引起零件接触面的磨损。尤其在轴承中侵入金属粉末、氧化物以及其他硬质颗粒时,则形成严重的磨料磨损,使磨损更为加剧。另外,由于振动和磨料的共同作用,对于处在非旋转状态的滚动轴承,会在套圈上形成与钢球节距相同的凹坑,即为摩擦腐蚀现象。如果轴承与孔座或轴颈配合太松,在运行中引起的相对运动,又会造成轴承座孔或轴颈的磨损。当磨损量较大时,轴承便产生游隙噪声,使振动增大。 二、滚动轴承的疲惫失效 在滚动轴承中,滚动体或套圈滚动表面由于接触载荷的反复作用,表层因反复的弹性变形而致冷作硬化,下层的材料应力与表层出现断层状分布,导致从表面下形成细小裂纹,随着以后的持续载荷运转,裂纹逐步发展到表面,致使材料表面的裂纹相互贯通,直至金属表层产生片状或点坑状剥落。轴承的这种失效形式成为疲劳失效。其主要原因是疲劳应力造成的,有时是由于润滑不良或强迫安装所引起。随着滚动轴承的继续运转,损坏逐步增大。因为有脱落的碎片被滚压在其余部分滚道上,并给那里造成局部超载荷而进一步使滚动损坏。轴承运转时,一旦发生疲劳剥落,其振动和噪声将急剧增大。 三、滚动轴承的腐蚀失效 轴承零件表面的腐蚀分三种类型。一是化学腐蚀,当水、酸等进入轴承或者使用含酸的润滑剂,都会产生这种腐蚀。二是电腐蚀,由于轴承表面间有较大电流通过使表面产生点蚀。三是微振腐蚀,为轴承套圈在机座座孔中或轴颈上的微小相对运动而至。结果使套圈表面产生红色或黑色的锈斑。轴承的腐蚀斑则是以后损坏的起点。 四、滚动轴承的塑变失效 压痕主要是由于滚动轴承受载荷后,在滚动体和滚道接触处产生塑性变形。载荷过大时会在滚道表面形成塑性变形凹坑。另外,若装配不当,也会由于过载或撞击造成表面局部凹陷。或者由于装配敲击,而在滚道上造成压痕。 五、滚动轴承的断裂失效 造成轴承零件的破断或裂纹的重要原因是由于运行时载荷过大、转速过高、润滑不良或装配不善而产生过大的热应力,也有的是由于磨削或热处理不当而导致的。 六、滚动轴承的胶合失效 滑动接触的两个表面,当一个表面上的金属粘附到另一个表面上的现象称为胶合。对于滚动轴承,当滚动体在保持架内被卡住或润滑不足、速度过高造成摩擦热过大,使保持架的材料粘附到滚子上而形成胶合。其胶合状为螺旋形污斑状。还有的是由于安装的初间隙过小,热膨胀引起滚动体与内外圈挤压,致使在轴承的滚动中产生胶合和剥落。
1、接触疲劳失效 接触疲劳失效系指轴承工作表面受到交变应力的作用而产生的材料疲劳失效。接触疲劳失效常见的形式是接触疲劳剥落。接触疲劳剥落发生在轴承工作表面,往往伴随着疲劳裂纹,首先从接触表面以下最大交变切应力处产生,然后扩展到表面形成不同的剥落形状。 如点状为点蚀或麻点剥落,剥落成小片状的称浅层剥落。由于剥落面的逐渐扩大,会慢慢向深层扩展,形成深层剥落。深层剥落是接触疲劳失效的疲劳源。 2、磨损失效 磨损失效系指表面之间的相对滑动摩擦导致其工作表面金属不断磨损而产生的失效。持续的磨损将引起轴承零件逐渐损坏,并最终导致轴承尺寸精度丧失及其它问题。磨损失效是各类轴承常见的失效模式之一,按磨损形式通常可分为磨粒磨损和粘着磨损。 磨粒磨损是指轴承工作表面之间挤入外来坚硬粒子或硬质异物或金属表面的磨屑且接触表面相对移动而引起的磨损,常在轴承工作表面造成犁沟状的擦伤。 粘着磨损是指由于摩擦表面的显微凸起或异物使摩擦面受力不均,在润滑条件严重恶化时,因局部摩擦生热,易造成摩擦面局部变形和摩擦显微焊合现象,严重时表面金属可能局部熔化,接触面上作用力将局部摩擦焊接点从基体上撕裂而增大塑性变形。 3、断裂失效 轴承断裂失效主要原因是缺陷与过载两大因素。当外加载荷超过材料强度极限而造成零件断裂称为过载断裂。过载原因主要是主机突发故障或安装不当。 轴承零件的微裂纹、缩孔、气泡、大块外来杂物、过热组织及局部烧伤等缺陷在冲击过载或剧烈振动时也会在缺陷处引起断裂,称为缺陷断裂。 应当指出,轴承在制造过程中,对原材料的入厂复验、锻造和热处理质量控制、加工过程控制中可通过仪器正确分析上述缺陷是否存在。但一般来说,通常出现的轴承断裂失效大多数为过载失效。 4、腐蚀失效 有些滚动轴承在实际运行当中不可避免的接触到水、水汽以及腐蚀性介质,这些物质会引起滚动轴承的生锈和腐蚀。另外滚动轴承在运转过程中还会受到微电流和静电的作用,造成滚动轴承的电流腐蚀。 滚动轴承的生锈和腐蚀会造成套圈、滚动体表面的坑状锈、梨皮状锈及滚动体间隔相同的坑状锈、全面生锈及腐蚀。最终引起滚动轴承的失效。 5、游隙变化失效 滚动轴承在工作中,由于外在或内在因素的影响,使得原有配合间隙改变,精度降低,乃至造成“咬死",称为游隙变化失效。外界因素如过盈量过大,安装不到位,温升引起的膨胀量、瞬时过载等;内在因素如残余奥氏体和残余应力处于不稳定状态等,均是造成游隙变化失效的主要原因。 扩展资料 滚动轴承中的向心轴承(主要承受径向力)通常由内圈、外圈、滚动体和滚动体保持架4部分组成。内圈紧套在轴颈上并与轴一起旋转,外圈装在轴承座孔中。 在内圈的外周和外圈的内周上均制有滚道。当内外圈相对转动时,滚动体即在内外圈的滚道上滚动,它们由保持架隔开,避免相互摩擦。推力轴承分紧圈和活圈两部分。 紧圈与轴套紧,活圈支承在轴承座上。套圈和滚动体通常采用强度高、耐磨性好的滚动轴承钢制造,淬火后表面硬度应达到HRC60~65。保持架多用软钢冲压制成,也可以采用铜合金夹布胶木或塑料等制造。 参考资料来源:百度百科-滚动轴承
滚动轴承的主要失效形式有以下几种: (1)疲劳点蚀滚动轴承在载荷作用下,滚动体与内、外滚道之间将产生接触应力。轴承转动时,接触应力是循环变化的,当工作若干时间以后,滚动体或滚道的局部表层金属脱落,使轴承产生振动和噪声而失效。 (2)塑性变形 当轴承的转速很低或间歇摆动时,轴承不会发生疲劳点蚀,此时轴承失效是因受过大的载荷(称为静载荷)或冲击载荷,使滚动体或内、外圈滚道上出现大的塑性变形,形成不均匀的凹坑,从而加大轴承的摩擦力矩,振动和噪声增加,运动精度降低。 (3)磨粒磨损、黏着磨损在轴承组合设计时,轴承处均设有密封装置。但在多尘条件下工作的轴承,外界的尘土、杂质仍会侵入到轴承内,使滚动体与滚道表面产生磨粒磨损。如果润滑不良,滚动轴承内有滑动的摩擦表面,还会产生黏着磨损,轴承转速越高,黏着磨损越严重。经磨损后,轴承游隙加大,运动精度降低,振动和噪声增强。

关于 构件疲劳断裂时微观形貌特征是什么? 和 轴承常见疲劳失效形式及抗疲劳方法有哪些,你知道吗 的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 构件疲劳断裂时微观形貌特征是什么? 的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于 轴承常见疲劳失效形式及抗疲劳方法有哪些,你知道吗 、 构件疲劳断裂时微观形貌特征是什么? 的信息别忘了在本站进行查找喔。

相关内容

热门资讯

黄浦新春文旅盛宴启幕,“最上海... 春节临近,年味氛围浓厚的豫园灯会日前亮灯,并首次从豫园商城升级扩容至BFC、古城公园、方浜中路、福佑...
品特色美食、赏千年珍宝 浦东喊... 满城尽是中国红,处处洋溢中国风。作为中国对外开放的窗口,上海浦东近日换上节日盛装,推出千场新春活动,...
从东台路到东台城:一路走来,还... 东台,一个坐落于江苏中部的沿海小城,被网友亲切地称作“黄海明珠”。东台路,一条深藏于上海黄浦区570...
岳麓山风景名胜区发布最新通告:... 来源:潇湘晨报岳麓山风景名胜区管理局1月29日发布关于岳麓山风景名胜区禁止违规野爬的通告:为切实保障...
忻州云中河温泉旅游度假区春节活... 来源:忻州云中河温泉旅游度假区
长沙岳麓山风景名胜区发布通告:... 1月31日,岳麓山风景名胜区发布禁止违规野爬的通告。尊敬的市民、游客朋友们:为切实保障广大市民游客的...
长株潭非遗集市火热开市 一键开... 1月30日,一场以非遗为轴、以新春为媒,深度融合长株潭三地优质文化资源的盛会——“非遗贺新春 寻味中...
老家河南·欢乐中国年丨十余家景... 大象新闻记者 池里军 罗雅静马年新春的脚步愈发临近,中原大地的年味也愈发浓郁。1月31日,由河南文旅...
瑞雪云海美如画 1月31日,重庆市南川区金佛山景区迎来降雪。雪后初晴,金佛山呈现雾凇、云海等气象奇观,构成一幅南国雪...
山西长治灵空山,蓝天大树 戚勇 摄山西长治灵空山,蓝天大树山西长治灵空山,蓝天大树山西长治灵空山,蓝天大树山西长治灵空山,蓝天...
江西兴国:银龙穿翠 路畅景美 本文转自:人民网-江西频道赣州市兴国县江背镇华坪村,公路蜿蜒穿梭于山峦间,与河流、田野、村舍、葱郁远...
必须收藏!一直开到年后,昆明冬... 春城的浪漫一半藏在风里一半藏在花海里四季花事轮番上线从不缺席美成了一幅流动的画卷今天给大家奉上一份超...
打开赏花地图看繁花美景聚人气、... 央视网消息:春节临近,2026北京家庭园艺嘉年华花开正盛。从最新上线的北京赏花地图开始,探寻冬日里的...
刺激了!仙游“回南天”要来了.... 最新消息福建又要下雪了可能还会出现回南天福建高海拔山区局部有雨夹雪据福建省气象部门消息未来十天全省有...
商丘乡亲们,被自己画中的长城邀... 画笔绘长城,雄关赴温情。1月30日,在八达岭长城景区的邀请下,河南商丘“网红画家”吴承言带领20多位...
太行山上过大年!山西晋城特色资... 1月29日,“太行山上过大年”山西省晋城市文旅主题宣传推广活动在沪举行。这场跨越山海的文旅对话,通过...
山东青岛:栈桥赏鸥 本文转自:人民网2026年1月30日,山东青岛栈桥景区,成群的海鸥在空中飞翔盘旋,吸引众多游客前来观...
朝暮皆有景,在长三角示范区捕捉... 朝看旭日东升,暮赏落日余晖。长三角示范区的朝与暮,藏着最治愈的风景。一起来欣赏↓晨光初露,霞光浸染。...
黄河壶口瀑布旅游区(山西•吉县... 来源:山西黄河壶口瀑布旅游区
洱海的冬天蓝得可怕,虽然治愈,... 其实摩旅来到洱海之前,刚打卡完玉龙雪山脚下的蓝月谷,再往前则是泸沽湖,两者的风格虽截然不同,但各有千...