如何判断二次函数的开口方向,对称轴,和顶点坐标 ( 怎样判断开口方向顶点坐标和对称轴啊?我上课没听希望各位帮一下忙。 )
迪丽瓦拉
2024-10-08 01:17:53
0

本篇文章给大家谈谈 如何判断二次函数的开口方向,对称轴,和顶点坐标 ,以及 怎样判断开口方向顶点坐标和对称轴啊?我上课没听希望各位帮一下忙。 对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。今天给各位分享 如何判断二次函数的开口方向,对称轴,和顶点坐标 的知识,其中也会对 怎样判断开口方向顶点坐标和对称轴啊?我上课没听希望各位帮一下忙。 进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

若二次函数为y=ax²+bx+c a>0,开口朝上 a<0,开口朝下 当y=0时,x的值即代表函数图像与x轴相交的两点坐标,对称轴就是这两点的中点(若函数图像与x轴相交于一点,那么此点即为顶点),即为顶点的横坐标 将对称轴x的值代入函数,可得y的值即为顶点的纵坐标 以上举例说明,希望对你有

根据的值可判断抛物线开口向下,根据顶点式可得到抛物线的对称轴为直线,顶点坐标为;然后利用二次函数的几何变换得到把先向左平移个单位,再向下平移个单位可得到.解:,抛物线开口向下,抛物线的对称轴为直线,顶点坐标为;把先向左平移个单位,再向下平移个单位可得到.故答案为向下;直线;;先向左平移个单位,再

二次函数基本表达式f(x)=Ax^2+Bx+C(A不为零,且A,B,C是实数)开口方向判断:A为正数,则开口朝上;A为负数,则开口朝下,a|越大,则二次函数图像的开口越小.对称轴:x=-(b/2a),用这个公式算 顶点坐标:(-(b/2a),(4ac-b^2)/4a)

1题:开口朝下 对称轴 X=1 顶点坐标(1,0)2题:开口朝下 对称轴 X= 0 顶点坐标 (0 ,-1 )3题:开口朝上 对称轴 X= 2 顶点坐标 (2,5)

当a>0时开口向上,a<0时开口向下 对称轴:x=-b/2a 顶点坐标:(-b/2a,(4ac-b²)/4a )y=2x²+ax-5 开口向上 对称轴:x=-a/4 顶点坐标(-a/4 ,-5 -a²/8)

(3)顶点是坐标原点,对称轴是 轴的抛物线的解析式形式为 .3.二次函数 的图像是对称轴平行于(包括重合) 轴的抛物线.4.二次函数 用配方法可化成: 的形式,其中 .5.二次函数由特殊到一般,可分为以下几种形式:① ;② ;③ ;④ ;⑤ .6.抛物线的三要素:开口方向、对称轴、顶点.① 的

当a大于0时开口向上;当a小于0时开口向下 用x=-b/2a的值判定对称轴的位置当-b/2a大于0时在x轴的正半轴即y轴的右侧;当-b/2a=0时对称轴就是y轴;当-b/2a小于0时在x轴的负半轴即y轴的左侧 顶点坐标为(-b/2a,(b^2-4ac)/4a )来判定顶点的坐标及位置

如何判断二次函数的开口方向,对称轴,和顶点坐标

=a(x+b/2a)^2 - b^2/4a +c =a(x+b/2a)^2+(b^2-4ac)/4a 所以:y=ax^2+bx+c(a,b,c为常数,a≠0)的顶点是(-b/2a,(b^2-4ac)/4a)对称轴是 X= -b/2a 具体可分为下面几种情况:当h>0时,y=a(x-h)²的图像可由抛物线y=ax²向右平行移动h个单位

在二次函数即二元一次函数ax²+bx+c(a≠0)中,a为2次项系数,当a>0时函数图象开口向上,当a<0时函数图象开口向下,b为1次项系数,b决定函数图象对称轴,-b/2a当b>0,a=1时,对称轴在y轴左侧即x的负半轴当b<0,a=1时,对称轴在y轴右侧即x的正半轴当b=0时对称轴为x=0,即对称轴为y

二次函数对称轴的开口方向和大小,位置和对称轴公式的判断方法如下:1、二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。|a|越大,则抛物线的开口越小;|a|越小,则抛物线的开口越大。2、一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号

当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a。当a>0,与b异号时(即ab0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号。

二次函数对称轴的开口方向和大小,位置和对称轴公式的判断方法如下:1、二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。|a|越大,则抛物线的开口越小;|a|越小,则抛物线的开口越大。2、一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号

当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。3、c决定抛物线与y轴交点,抛物线与y轴交于(0,c)。如:y=2x^2+5x+6。即y=2(x+5/4)^2+23/8,开口向上。一般地,把形如y=ax+bx+c(a≠0) (a、b、c是常数)的函数叫做二次函数,其

二次函数对称轴怎么判断

对于y=ax²+bx+c 当a>0时开口向上,a<0时开口向下 对称轴:x=-b/2a 顶点坐标:(-b/2a,(4ac-b²)/4a )y=2x²+ax-5 开口向上 对称轴:x=-a/4 顶点坐标(-a/4 ,-5 -a²/8)

1,抛物线开口方向是由二次项系数a决定;a>0,开口向上;a<0,开口向下。如y=4x²-1,a=4>0,所以开口向上。 2,对称轴,由二次项系数a,和一次项系数b 确定,当b=0时,对称轴是y轴,(即直线x=0),一般的由对称轴公式 x=-b/2a,来确定。如y=4x²-1,因为b=0

(1)抛物线 的顶点是坐标原点,对称轴是 轴.(2)函数 的图像与 的符号关系.①当 时 抛物线开口向上 顶点为其最低点;②当 时 抛物线开口向下 顶点为其最高点.(3)顶点是坐标原点,对称轴是 轴的抛物线的解析式形式为 .3.二次函数 的图像是对称轴平行于(包括重合) 轴的抛物线.4.二次函数

1、开口方向:将函数化为y=ax²+bx+c,如果a>0,则开口向上;如果a<0,则开口向下。例如,函数y=x²-2x-3,a=1>0所以开口向上。2、对称轴:直线x=-b/2a 例如,函数y=x²-2x-3,-b/2a=-(-2)/2×1=1,所以对称轴为直线x=1。3、顶点坐标:[-b/(2a),(4ac

怎样判断开口方向顶点坐标和对称轴啊?我上课没听希望各位帮一下忙。

顶点坐标是用来表示二次函数抛物线顶点的位置的参考指标,顶点式:y=a(x-h)²+k (a≠0,k为常数)顶点坐标:【-b/2a,(4ac-b²)/4a】。当h>0时,y=a(x-h) 的图象可由抛物线y=ax2;向右平行移动h个单位得到;当h<0时,则向左平行移动|h|个单位得到;当h>0,k>0时,将

抛物线的开口方向由二次项的系数a确定。a>0,开口向上。 a<0,开口向下。对称轴由公式x=-b/2a确定。顶点坐标公式为(-b/2a,【4ac-b²】/4a)确定。也可把解析式y=ax²+bx+c用配方法化为y=a(x+h)²+k的形式,其顶点坐标为(-h,k)..。

先通过a的正负确定抛物线的开口方向,a>0时,开口向上;a<0时,开口向下。然后进行配方写成a(x-m)²+n的形式,将这个形式展开后和原式对比得到 m=-b/2a,n=(4ac-b²)/4a 所以ax²+bx+c配方后就写成a(x+(b/2a))²+((4ac-b²)/4a)的形式。根据

对于标准的初中数学中的二次函数的抛物线y=ax^2+bx+c,抛物线的开口方向看二次项的系数的符号,二次项是正的,开口方向向上,负的,开口方向向下。对称轴y=a/2

1题:开口朝下 对称轴 X=1 顶点坐标(1,0)2题:开口朝下 对称轴 X= 0 顶点坐标 (0 ,-1 )3题:开口朝上 对称轴 X= 2 顶点坐标 (2,5)

1、开口方向:将函数化为y=ax²+bx+c,如果a>0,则开口向上;如果a<0,则开口向下。例如,函数y=x²-2x-3,a=1>0所以开口向上。2、对称轴:直线x=-b/2a 例如,函数y=x²-2x-3,-b/2a=-(-2)/2×1=1,所以对称轴为直线x=1。3、顶点坐标:[-b/(2a),(4ac

若抛物线为y=-1/2x²+2x-1, 其对称轴为x=-2/ (-1/2×2)=2. 3,顶点坐标,可用配方法把y=ax²+bx+c化为a(x+b/2a)²+(4ac-b²)/4a的形式,其顶点坐标为[b/2a, (4ac-b²)/4a], 如y=4x²-1,由于b=0,顶点的横坐标为0,代入

抛物线开口方向和对称轴还有顶点坐标怎么看

1,抛物线开口方向是由二次项系数a决定;a>0,开口向上;a<0,开口向下。如y=4x²-1,a=4>0,所以开口向上。 2,对称轴,由二次项系数a,和一次项系数b 确定,当b=0时,对称轴是y轴,(即直线x=0),一般的由对称轴公式 x=-b/2a,来确定。如y=4x²-1,因为b=0,所以对称轴是y轴。若抛物线为y=-1/2x²+2x-1, 其对称轴为x=-2/ (-1/2×2)=2. 3,顶点坐标,可用配方法把y=ax²+bx+c化为a(x+b/2a)²+(4ac-b²)/4a的形式,其顶点坐标为[b/2a, (4ac-b²)/4a], 如y=4x²-1,由于b=0,顶点的横坐标为0,代入解析式得y=-1,所以顶点坐标为(0,-1)。
1、开口方向:将函数化为y=ax²+bx+c,如果a>0,则开口向上;如果a<0,则开口向下。 例如,函数y=x²-2x-3,a=1>0所以开口向上。 2、对称轴:直线x=-b/2a 例如,函数y=x²-2x-3,-b/2a=-(-2)/2×1=1,所以对称轴为直线x=1。 3、顶点坐标:[-b/(2a),(4ac-b²)/(4a)],因为顶点在对称轴上,即顶点横坐标x=-b/2a,代入求得顶点纵坐标y=4ac-b² 例如,函数y=x²-2x-3,x=-b/2a=1,y=(4ac-b²)/(4a)=[4×1×3-(-2)²]/4=-4 扩展资料详解: 1、对称轴 二次函数图像是轴对称图形。对称轴为直线 对称轴与二次函数图像唯一的交点为二次函数图象的顶点P。 特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。是顶点的横坐标(即x=?)。 a,b同号,对称轴在y轴左侧; a,b异号,对称轴在y轴右侧。 2、顶点 二次函数图像有一个顶点P,坐标为P(h,k)。 当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)2+k(x≠0) 3、开口 二次项系数a决定二次函数图像的开口方向和大小。 当a>0时,二次函数图象向上开口;当a<0时,抛物线向下开口。 |a|越大,则二次函数图像的开口越小。
对于y=ax²+bx+c来说,如果a>0,则开口向上;如果a<0,则开口向下。 顶点坐标:(-b/2a,(4ac-b²)) 对称轴:直线x=-b/2a
一、 二次函数一般式:y=ax²+bx+c 二、 求对称轴公式:X=-(b/2a) 三、 求解析式常用的: 1.交点式 y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] 2. 顶点式 y=a(x+h)²+k 它的顶点是(-h,k) 四、 求根 如图 五、关于与x轴的交点 利用 Δ=b^2-4ac, Δ>0,图象与x轴交于两点: ([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0); Δ=0,图象与x轴交于一点: (-b/2a,0); Δ<0,图象与x轴无交点; 六 单调性(增减性) a>0 时 开口向上 对称轴左边单调递减 对称轴右边递增 a<0 时 开口向下 对称轴左边单调递增 对称轴右边递减
设二次函数的解析式是y=ax^2+bx+c 则二次函数的对称轴为直线x=-b/2a, 顶点横坐标为-b/2a,顶点纵坐标为(4ac-b^2)/4a http://ks.cn.yahoo.com/question/1308050901306.html
1、开口方向:将函数化为y=ax²+bx+c,如果a>0,则开口向上;如果a<0,则开口向下。 例如,函数y=x²-2x-3,a=1>0所以开口向上。 2、对称轴:直线x=-b/2a 例如,函数y=x²-2x-3,-b/2a=-(-2)/2×1=1,所以对称轴为直线x=1。 3、顶点坐标:[-b/(2a),(4ac-b²)/(4a)],因为顶点在对称轴上,即顶点横坐标x=-b/2a,代入求得顶点纵坐标y=4ac-b² 例如,函数y=x²-2x-3,x=-b/2a=1,y=(4ac-b²)/(4a)=[4×1×3-(-2)²]/4=-4 扩展资料详解: 1、对称轴 二次函数图像是轴对称图形。对称轴为直线 对称轴与二次函数图像唯一的交点为二次函数图象的顶点P。 特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。是顶点的横坐标(即x=?)。 a,b同号,对称轴在y轴左侧; a,b异号,对称轴在y轴右侧。 2、顶点 二次函数图像有一个顶点P,坐标为P(h,k)。 当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)2+k(x≠0) 3、开口 二次项系数a决定二次函数图像的开口方向和大小。 当a>0时,二次函数图象向上开口;当a<0时,抛物线向下开口。 |a|越大,则二次函数图像的开口越小。
1、开口方向:将函数化为y=ax²+bx+c,如果a>0,则开口向上;如果a<0,则开口向下。 例如,函数y=x²-2x-3,a=1>0所以开口向上。 2、对称轴:直线x=-b/2a 例如,函数y=x²-2x-3,-b/2a=-(-2)/2×1=1,所以对称轴为直线x=1。 3、顶点坐标:[-b/(2a),(4ac-b²)/(4a)],因为顶点在对称轴上,即顶点横坐标x=-b/2a,代入求得顶点纵坐标y=4ac-b² 例如,函数y=x²-2x-3,x=-b/2a=1,y=(4ac-b²)/(4a)=[4×1×3-(-2)²]/4=-4 扩展资料详解: 1、对称轴 二次函数图像是轴对称图形。对称轴为直线 对称轴与二次函数图像唯一的交点为二次函数图象的顶点P。 特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。是顶点的横坐标(即x=?)。 a,b同号,对称轴在y轴左侧; a,b异号,对称轴在y轴右侧。 2、顶点 二次函数图像有一个顶点P,坐标为P(h,k)。 当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)2+k(x≠0) 3、开口 二次项系数a决定二次函数图像的开口方向和大小。 当a>0时,二次函数图象向上开口;当a<0时,抛物线向下开口。 |a|越大,则二次函数图像的开口越小。
当a大于0时开口向上;当a小于0时开口向下 用x=-b/2a的值判定对称轴的位置当-b/2a大于0时在x轴的正半轴即y轴的右侧;当-b/2a=0时对称轴就是y轴;当-b/2a小于0时在x轴的负半轴即y轴的左侧 顶点坐标为(-b/2a,(b^2-4ac)/4a )来判定顶点的坐标及位置

关于 如何判断二次函数的开口方向,对称轴,和顶点坐标 和 怎样判断开口方向顶点坐标和对称轴啊?我上课没听希望各位帮一下忙。 的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 如何判断二次函数的开口方向,对称轴,和顶点坐标 的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于 怎样判断开口方向顶点坐标和对称轴啊?我上课没听希望各位帮一下忙。 、 如何判断二次函数的开口方向,对称轴,和顶点坐标 的信息别忘了在本站进行查找喔。

相关内容

热门资讯

西宁:点亮灯光景观 喜迎新春佳... 原标题:西宁:点亮灯光景观 喜迎新春佳节随着春节临近,西宁市麒麟湾公园、南川河沿岸及桥梁处,新春灯光...
搭直升机15分钟 尽览罗湖盐田...   这条被誉为“最美山海线”的低空飞行线路,串联罗湖盐田美景。  2月1日上午,“山盟海誓 缘起梧桐...
灵隐飞来峰景区预约机制调整首日... 2025年12月1日起实行免票政策2个月后,杭州灵隐飞来峰景区升级上新预约规则:2026年2月1日起...
避开冰雪游同质化,棋盘山冬捕玩... 晨曦穿透辽沈大地的薄雾,落在棋盘山秀湖5.04平方公里的冰面上,折射出凛冽又温暖的光。冰面之下,三千...
邀您过大年·乐享锡游记!无锡新... 2月1日下午,“邀您过大年·乐享锡游记”迎新春旺文旅促消费推广活动在二泉广场启动。现场,年味十足,热...
千盏孔明灯升起新春梦境 ,限定... 1月31日,上海千古情景区开启 “新春狂欢” 探营,邀游客沉浸式邂逅非遗年味,解锁别样新春体验。 园...
打卡《繁花》《爱情神话》取景地... 马年春节将至,上海街头年味渐浓,首届旅游攻略超级大赛“旅选上海 超级新春”全天大直播正式启幕,于2月...
总台2026年春晚宜宾分会场发... 封面新闻记者 伍雪梅 摄影报道“姓马和生肖属马的游客凭身份证2026年全年游蜀南竹海、兴文石海景区免...
漫步前滩太古里,邂逅冬日里的艺... 这个冬天,前滩太古里星光般的灯饰与泡泡玛特“星星人”装置相互映照,不少路人停下脚步拍照——这里正上演...
来许昌鄢陵赴一场“梅”好时光丨... 疏影横斜水清浅,暗香浮动月黄昏。近日,第十二届中国鄢陵蜡梅梅花文化节举行,吸引众多游客前来寻香赏景。...
一起来 上冰雪〡解锁雪中露营新... 露营,是现在广受欢迎的户外休闲活动。春夏秋三季,大家走进绿水青山,亲近自然、放松心情。而到了冬天,天...
长丰草莓香飘淮南吾悦广场 作为活动的核心环节,现场预告了安徽省2026“游购乡村·好物迎春”文旅消费迎春过大年活动内容,重点围...
冬日大明湖公园,别有一番韵味 戚勇 摄冬日大明湖公园,别有一番韵味冬日大明湖公园,别有一番韵味冬日大明湖公园,别有一番韵味冬日大明...
从“热汤”到“金汤”!息烽康养... 群山环抱,雾气氤氲,一池暖汤静卧其间,悄然洗去都市人的一身倦意。息烽南山天沐温泉近日,息烽南山天沐温...
俄罗斯游客春节赴华预订量增长近... 参考消息网2月1日报道 据俄罗斯卫星社网站2月1日报道,中国在线旅游平台数据显示,今年农历新年期间,...
“嘉禾望岗”整出广州文旅的“活... 广州地铁站“嘉禾望岗”是地铁2、3号线的交汇点,因“向北是机场,向南是火车站”一直被冠以“告别车站”...
韩国民众赴华旅游热度持续升温 临近春节,韩国部分旅行社赴华旅游产品的预订人数同比增长近九成,旅游路线也呈现出多样化的趋势。中国对韩...
鸡足山距离大理市区约70公里,... 来到大理鸡足山景区,无论游客中心的工作人员还是入口处的检票大哥,对外来者的态度都相当不错。当时还深感...
逛大院、赶大集、游古建……到山... 1月31日,“沪上遇晋中欢乐过大年”晋中文旅宣传推介活动在上海热力启幕。活动以“文创展示+非遗体验+...
和猛犸象一起露营过夜!自然博物... 上海自然博物馆昨晚(1月31日)迎来了寒假首场“趣玩·博物馆奇妙夜”,不同于以往,本次活动以“动物王...