对称轴方程是什么?有哪些特点? ( 抛物线关于x轴对称口诀 )
迪丽瓦拉
2024-10-07 23:10:36
0

本篇文章给大家谈谈 对称轴方程是什么?有哪些特点? ,以及 抛物线关于x轴对称口诀 对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。今天给各位分享 对称轴方程是什么?有哪些特点? 的知识,其中也会对 抛物线关于x轴对称口诀 进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

所谓“抛物线的对称轴方程”意思就是说:任意的一条抛物线总有一条对称轴(直线),而在坐标系中,任意一条直线都可以用一个解析式表示,这个解析式也称之为这条直线的方程,即抛物线的对称轴方程 如:对于抛物线y=ax^2+bx+c来说 它的对称轴方程是:x=-b/2a 若有用,望采纳,谢谢。

一元二次方程对称轴是:x=-b/2a。y=2x²+4x+1的对称轴方程是直线x=-1。y=ax²+bx+c的对称轴方程是直线x=-b/2a。简介 许多图形都有对称轴。例如椭圆、双曲线有两条对称轴,抛物线有一条。正圆锥或正圆柱的对称轴是过底面圆心与顶点或另一底面圆心的直线。对称轴上的任意一点与

一元二次方程对称轴是:x=-b/2a。只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。一元二次方程经过整理都可化成一般形式ax+bx+c=0(a≠0)。其中ax叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。学数学的小窍门 1

对称轴方程是什么介绍如下:对称轴公式是:x=-b/(2a),要是ab同号,则对称轴在y轴左侧;要是ab异号,则对称轴在y轴右侧。函数对称轴:1、f(x)满足f(a+x)=f(a-x),则x=a为对称轴。2、f(x)满足f(a+x)=f(b-x),则x=(a+b)/2为对称轴。定义:如果一个图形沿着一条直线对折,

1、对称轴方程就是指几何图形成轴对称或旋转对称的直线的方程,即对称轴方程是X=-b/2a,而对压下则y=x^2+bx+c。2、对称轴,是指使几何图形成轴对称或旋转对称的直线。对称图形的一部分绕它旋转一定的角度后,就与另一部分重合。许多图形都有对称轴。例如椭圆、双曲线有两条对称轴,抛物线有一

对称轴方程是什么?有哪些特点?

抛物线的性质如下:抛物线的十大性质对称性、定义域、奇偶性、零点、最值点、收敛性、焦点、切线性质、独立变量关系、物理应用。1.对称性 抛物线是关于其纵轴对称的,也称为纵轴对称性。这意味着抛物线上的点关于纵轴的镜像点也在抛物线上。如果在抛物线上取任意一点,那么在同一高度上,与该点关于纵轴

(1)范围 x≥0,y∈R (2)对称性 关于x轴对称,对称轴又叫抛物线的轴.(3)顶点 抛物线和它的轴的交点.(4)离心率 始终为常数1 (5)焦半径 PF|=x0+p/2 (6)通径 通过焦点且垂直对称轴的直线,与抛物线相交于两点,连接这两点的线段叫做抛物线的通径.通径的长度:2P 抛物线有很多几何性质,网上也有

5、抛物线的特性:①抛物线是轴对称图形。对称轴为直线 x= -b/2a。对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)。②抛物线有一个顶点P,坐标为 P( -b/2a,(4ac-b²)/4a)。当-b/2a=0时,P在y轴上;当Δ= b²-4ac=0

3.对称性:抛物线具有轴对称性,其对称轴为y轴。当a>0时,抛物线开口向上,因此在对称轴的右侧(x>0),函数值随x的增大而增大;在对称轴的左侧(x<0),函数值随x的增大而减小。当a<0时,抛物线开口向下,因此在对称轴的右侧(x>0),函数值随x的增大而减小;在对称轴的左侧(x<0),函数值随x

抛物线的简单几何性质包括:1. 对称性:抛物线关于其对称轴对称。2. 焦点和准线:抛物线有一个焦点和一个准线,所有的抛物线上的点到焦点的距离等于到准线的距离。3. 开口方向和宽度:抛物线可以向上或向下开口,开口的宽度由抛物线的方程决定。首先,抛物线的对称性是其最基础的性质之一。无论是向上开口

1.抛物线是轴对称图形.对称轴为直线x = -b/2a.对称轴与抛物线唯一的交点为抛物线的顶点P.特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上.3.二次项系数a决定抛

抛物线的简单几何性质如下:(1)范围 x≥0,y∈R。(2)对称性 关于x轴对称,对称轴又叫抛物线的轴。(3)顶点 抛物线和它的轴的交点。(4)离心率 始终为常数1。(5)焦半径 PF|=x0+p/2。(6)通径 通过焦点且垂直对称轴的直线,与抛物线相交于两点,连接这两点的线段叫做抛物线的通径,通径的长度:2P

关于横轴对称的抛物线有什么性质

x轴上的点的坐标特点 1、x轴上的点坐标最主要的特点是:x轴是一条数轴,它沿着数轴从左往右连续地增加。2、x轴上的点的坐标是一组正整数或负整数,而且是有范围的,也就是说,x轴上每个点的坐标距离一定的范围的距离。3、在x轴上,一个位置的坐标从零开始,然后沿着x轴不断增加,每次增加的

x值不变 y值变成相反数

如果两个点关于x轴对称 这两点坐标有以下特点:(1)这两个点的横坐标相等 (2)这两个点的纵坐标互为相反数

关于轴对称,中心对称,对称点的结论关于轴对称: 若则函数的图象关于直线对称 若则函数的图象关于直线对称 函数与的图象关于直线对称 函数与的图象关于直线对称 函数与的图象关于直线对称 关于中心对称: 6、若则函数的图象关于点对称 7、若则函数的图象关于点对称 8、函数与的图象关于点对称 9、函数与

关于x轴的对称点有什么特点

抛物线的简单几何性质如下:(1)范围 x≥0,y∈R。(2)对称性 关于x轴对称,对称轴又叫抛物线的轴。(3)顶点 抛物线和它的轴的交点。(4)离心率 始终为常数1。(5)焦半径 PF|=x0+p/2。(6)通径 通过焦点且垂直对称轴的直线,与抛物线相交于两点,连接这两点的线段叫做抛物线的通径,通径的长度:2P

抛物线的简单几何性质包括:1. 对称性:抛物线关于其对称轴对称。2. 焦点和准线:抛物线有一个焦点和一个准线,所有的抛物线上的点到焦点的距离等于到准线的距离。3. 开口方向和宽度:抛物线可以向上或向下开口,开口的宽度由抛物线的方程决定。首先,抛物线的对称性是其最基础的性质之一。无论是向上开口

一,抛物线的范围: y2=2px y取全体实数 X Y X 0 二,抛物线的对称性 y2=2px 关于X轴对称 没有对称中心,因此,抛物线又叫做无心圆锥曲线. 而椭圆和双曲线又叫做有心圆锥曲线 X Y 新授内容 定义 :抛物线与对称轴的交点,叫做抛物线的顶点 只有一个顶点 X Y 新授内容 三,抛物线的顶点 y2=2p

1、对称性:抛物线是轴对称图形,其对称轴为直线x=-b/2a。2、顶点:抛物线有唯一的一个顶点P,其坐标为P(-b/2a,(4ac-b²)/4a)。3、开口方向和大小:二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。4、对称轴位置:一次项系数b和二

抛物线的十大性质对称性、定义域、奇偶性、零点、最值点、收敛性、焦点、切线性质、独立变量关系、物理应用。1.对称性 抛物线是关于其纵轴对称的,也称为纵轴对称性。这意味着抛物线上的点关于纵轴的镜像点也在抛物线上。如果在抛物线上取任意一点,那么在同一高度上,与该点关于纵轴对称的点也在抛物线上

一,抛物线的范围: y2=2px y取全体实数 X Y X 0 二,抛物线的对称性 y2=2px 关于X轴对称 没有对称中心,因此,抛物线又叫做无心圆锥曲线. 而椭圆和双曲线又叫做有心圆锥曲线 X Y 新授内容 定义 :抛物线与对称轴的交点,叫做抛物线的顶点 只有一个顶点 X Y 新授内容 三,抛物线的顶点 y2=2p

抛物线的对称性

对称轴是直线x=-b/(2a)比如:a>0时,抛物线开口朝上,反之朝下;当然a=0是非常重要的一个点,因为a=0时,已不是抛物线而是直线;还可以令y=0时,就可以算出与x轴的交点横坐标。^^y=ax^2+bx+c =a(x^2+b/ax)+c =a{[x^2+b/ax+(b/2a)^2]-(b/2a)^2}+c =a(x+b/2a)^2

规律如下:抛物线关于XY轴的规律如下:关于x轴对称的点,横坐标为相同,纵坐标为相反数。关于y轴对称的点,横坐标为相反数,纵坐标相等。平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。简介:抛物线是指平面内到一个定点F(焦点)和一条定直线

x=-b/2a 抛物线对称轴公式 x=-b/2a 垂直于准线并通过焦点的线(即通过中间分解抛物线的线)被称为“对称轴”。抛物线对称轴公式 y=ax_+bx+c =a(x_+b/ax)+c =a(x_+b/ax+b_/4a_)+c-b_/4a =a(x+b/2a)_-(-4ac+b_)/(4a)顶点(-b/2a,(4ac-b_)/4a)对称轴x=-b/

抛物线对称轴公式:x=-b/2a。垂直于准线并通过焦点的线(即通过中间分解抛物线的线)被称为“对称轴”。y=ax²+bx+c。=a(x²+b/ax)+c。=a(x²+b/ax+b²/4a²)+c-b²/4a。=a(x+b/2a)²-(-4ac+b²)/(4a)顶点(-b/2a,(4ac

0=2ax2+2c 进一步化简,得到抛物线关于x轴的对称轴公式:x=c/−a 这个公式表示了抛物线关于x轴的对称轴的x坐标。这意味着,如果抛物线的方程是 y=ax²+bx+c,那么它关于x轴的对称轴的方程是x=−c/a。这就是抛物线关于x轴的对称轴公式的推导过程。通过这个公式,我们可以方便

1. 关于x轴对称,y=ax+bx+c关于x轴对称后,得到的解析式是y=-ax-bx-c;y=a(x-h)+k关于x轴对称后,得到的解析式是y=-a(x-h)-k.2. 关于y轴对称,y=ax+bx+c 关于y轴对称后,得到的解析式是y=ax-bx+c;y=a(x-h)+k关于y轴对称后,得到的解析式;y=a(x+h)+k。3. 关于

抛物线关于x轴对称口诀

1、抛物线是轴对称图形 对称轴为直线x=—b/2a,对称轴与抛物线唯一的交点为抛物线的顶点P,特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)。2、抛物线有一个顶点P 坐标为:P(—b/2a,(4ac—b^2)/4a)当—b/2a=0时,P在y轴上;当=b^2—4ac=0时,P在x轴上。3、二次项

对称轴公式x=-2a/b;在数学中,抛物线是一个平面曲线,它是镜像对称的,并且当定向大致为U形(如果不同的方向,它仍然是抛物线)。它适用于几个表面上不同的数学描述中的任何一个,这些描述都可以被证明是完全相同的曲线。抛物线的一个描述涉及一个点(焦点)和一条线(准线)。焦点并不在准线上。

y=ax^2+bx+c =a(x^2+b/ax)+c =a{[x^2+b/ax+(b/2a)^2]-(b/2a)^2}+c =a(x+b/2a)^2+c-b^2/4a 顶点(-b/2a,(4ac-b^2)/4a)对称轴x=-b/2a 抛物线 具有这样的性质,如果它们由反射光的材料制成,则平行于抛物线的对称轴行进并撞击其凹面的光被反射到其焦点,而不管

抛物线对称轴公式:x=-b/2a。垂直于准线并通过焦点的线(即通过中间分解抛物线的线)被称为“对称轴”。y=ax²+bx+c。=a(x²+b/ax)+c。=a(x²+b/ax+b²/4a²)+c-b²/4a。=a(x+b/2a)²-(-4ac+b²)/(4a)顶点(-b/2a,(4ac

对称轴是直线x=-b/(2a)比如:a>0时,抛物线开口朝上,反之朝下;当然a=0是非常重要的一个点,因为a=0时,已不是抛物线而是直线;还可以令y=0时,就可以算出与x轴的交点横坐标。^^y=ax^2+bx+c =a(x^2+b/ax)+c =a{[x^2+b/ax+(b/2a)^2]-(b/2a)^2}+c =a(x+b/2a)^2

x轴对称:沿x轴对折,对折的两部分是完全重合的。即x坐标相同,y坐标互为相反数。y轴对称:沿y轴对折,对折的两部分是完全重合的。即y坐标相同,x坐标互为相反数。原点对称:当坐标轴上有一点(X,Y)(此处X,Y取正值)其对称点为同坐标系中的(-X,- Y)这2个点就叫做原点对称。抛物线对称轴

规律如下:抛物线关于XY轴的规律如下:关于x轴对称的点,横坐标为相同,纵坐标为相反数。关于y轴对称的点,横坐标为相反数,纵坐标相等。平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。简介:抛物线是指平面内到一个定点F(焦点)和一条定直线

抛物线关于x轴y轴对称规律是什么?

定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax^2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。 重要概念:(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。) 二次函数表达式的右边通常为二次。 x是自变量,y是x的二次函数 二次函数的三种表达式 ①一般式:y=ax2+bx+c(a,b,c为常数,a≠0) ②顶点式[抛物线的顶点 P(h,k) ]:y=a(x-h)^2+k ③交点式[仅限于与x轴有交点 A(x1,0) 和 B(x2,0) 的抛物线]:y=a(x-x1)(x-x2) 以上3种形式可进行如下转化: ①一般式和顶点式的关系 对于二次函数y=ax2+bx+c,其顶点坐标为(-b/2a),(4ac-b²)/4a),即 h=-b/2a=(x1+x2)/2 k=(4ac-b²)/4a ②一般式和交点式的关系 x1,x2=[-b±√(b²-4ac)]/2a(即一元二次方程求根公式) 抛物线的性质 1.抛物线是轴对称图形。对称轴为直线x = -b/2a。 对称轴与抛物线唯一的交点为抛物线的顶点P。 特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b²)/4a ) 当-b/2a=0时,P在y轴上;当Δ= b²-4ac=0时,P在x轴上。 3.二次项系数a决定抛物线的开口方向和大小。 当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。 |a|越大,则抛物线的开口越小。 4.一次项系数b和二次项系数a共同决定对称轴的位置。 当a与b同号时(即ab>0),对称轴在y轴左; 因为若对称轴在左边则对称轴小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同号 当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是-b/2a>0,所以b/2a要小于0,所以a、b要异号 5.常数项c决定抛物线与y轴交点。 抛物线与y轴交于(0,c) 6.抛物线与x轴交点个数 Δ= b²-4ac>0时,抛物线与x轴有2个交点。 Δ= b²-4ac=0时,抛物线与x轴有1个交点。 _______ Δ= b²-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b²-4ac 的值的相反数,乘上虚数i,整个式子除以2a) 当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b²/4a;在{x|x-b /2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b²/4a}相反不变 当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax²+c(a≠0) 二次函数与一元二次方程 特别地,二次函数(以下称函数)y=ax²+bx+c, 当y=0时,二次函数为关于x的一元二次方程(以下称方程), 即ax²+bx+c=0 此时,函数图像与x轴有无交点即方程有无实数根。 函数与x轴交点的横坐标即为方程的根。 1.二次函数y=ax²,y=a(x-h)²,y=a(x-h)² +k,y=ax²+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表: 解析式 y=ax² y=a(x-h)² y=a(x-h)²+k y=ax²+bx+c 顶点坐标 (0,0) (h,0) (h,k) (-b/2a,sqrt[4ac-b²]/4a) 对 称 轴 x=0 x=h x=h x=-b/2a 当h>0时,y=a(x-h)²的图象可由抛物线y=ax²向右平行移动h个单位得到, 当h<0时,则向左平行移动|h|个单位得到. 当h>0,k>0时,将抛物线y=ax²向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)²+k的图象; 当h>0,k<0时,将抛物线y=ax²向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象; 当h0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)²+k的图象; 当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象; 因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)²+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便. 2.抛物线y=ax²+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b²]/4a). 3.抛物线y=ax²+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小. 4.抛物线y=ax²+bx+c的图象与坐标轴的交点: (1)图象与y轴一定相交,交点坐标为(0,c); (2)当△=b²-4ac>0,图象与x轴交于两点A(x₁,0)和B(x₂,0),其中的x1,x2是一元二次方程ax²+bx+c=0 (a≠0)的两根.这两点间的距离AB=|x₂-x₁| 另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-A |(A为其中一点的横坐标) 当△=0.图象与x轴只有一个交点; 当△0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0. 5.抛物线y=ax²+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b²)/4a. 顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值. 6.用待定系数法求二次函数的解析式 (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式: y=ax²+bx+c(a≠0). (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)²+k(a≠0). (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x₂)(a≠0). 7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.
抛物线关于y轴对称,抛物线上所有点横坐标变为相反数,纵坐标不变,故以-x代替x,y不变,将原抛物线解析式改写即可.解:依题意,以-x代替x,y不变,则关于y轴对称的抛物线为y=a(-x) 2 +b(-x)+c,即y=ax 2 -bx+c,而y=ax 2 +bx+c的图象经过(1,0)、(3,0)、(0,3),根据待定系数法可以得y=x 2 -4x+3,故本题答案为:y=x 2 +4x+3.本题考查了抛物线关于坐标轴对称的抛物线解析式求法.类似于点关于坐标轴对称的坐标求法,关于x轴对称,点横坐标不变,纵坐标变为相反数,关于y轴对称,点横坐标变为相反数,纵坐标不变.

关于 对称轴方程是什么?有哪些特点? 和 抛物线关于x轴对称口诀 的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 对称轴方程是什么?有哪些特点? 的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于 抛物线关于x轴对称口诀 、 对称轴方程是什么?有哪些特点? 的信息别忘了在本站进行查找喔。

相关内容

热门资讯

邀您过大年·乐享锡游记!无锡新... 2月1日下午,“邀您过大年·乐享锡游记”迎新春旺文旅促消费推广活动在二泉广场启动。现场,年味十足,热...
千盏孔明灯升起新春梦境 ,限定... 1月31日,上海千古情景区开启 “新春狂欢” 探营,邀游客沉浸式邂逅非遗年味,解锁别样新春体验。 园...
打卡《繁花》《爱情神话》取景地... 马年春节将至,上海街头年味渐浓,首届旅游攻略超级大赛“旅选上海 超级新春”全天大直播正式启幕,于2月...
总台2026年春晚宜宾分会场发... 封面新闻记者 伍雪梅 摄影报道“姓马和生肖属马的游客凭身份证2026年全年游蜀南竹海、兴文石海景区免...
漫步前滩太古里,邂逅冬日里的艺... 这个冬天,前滩太古里星光般的灯饰与泡泡玛特“星星人”装置相互映照,不少路人停下脚步拍照——这里正上演...
来许昌鄢陵赴一场“梅”好时光丨... 疏影横斜水清浅,暗香浮动月黄昏。近日,第十二届中国鄢陵蜡梅梅花文化节举行,吸引众多游客前来寻香赏景。...
一起来 上冰雪〡解锁雪中露营新... 露营,是现在广受欢迎的户外休闲活动。春夏秋三季,大家走进绿水青山,亲近自然、放松心情。而到了冬天,天...
长丰草莓香飘淮南吾悦广场 作为活动的核心环节,现场预告了安徽省2026“游购乡村·好物迎春”文旅消费迎春过大年活动内容,重点围...
冬日大明湖公园,别有一番韵味 戚勇 摄冬日大明湖公园,别有一番韵味冬日大明湖公园,别有一番韵味冬日大明湖公园,别有一番韵味冬日大明...
从“热汤”到“金汤”!息烽康养... 群山环抱,雾气氤氲,一池暖汤静卧其间,悄然洗去都市人的一身倦意。息烽南山天沐温泉近日,息烽南山天沐温...
俄罗斯游客春节赴华预订量增长近... 参考消息网2月1日报道 据俄罗斯卫星社网站2月1日报道,中国在线旅游平台数据显示,今年农历新年期间,...
“嘉禾望岗”整出广州文旅的“活... 广州地铁站“嘉禾望岗”是地铁2、3号线的交汇点,因“向北是机场,向南是火车站”一直被冠以“告别车站”...
韩国民众赴华旅游热度持续升温 临近春节,韩国部分旅行社赴华旅游产品的预订人数同比增长近九成,旅游路线也呈现出多样化的趋势。中国对韩...
鸡足山距离大理市区约70公里,... 来到大理鸡足山景区,无论游客中心的工作人员还是入口处的检票大哥,对外来者的态度都相当不错。当时还深感...
逛大院、赶大集、游古建……到山... 1月31日,“沪上遇晋中欢乐过大年”晋中文旅宣传推介活动在上海热力启幕。活动以“文创展示+非遗体验+...
和猛犸象一起露营过夜!自然博物... 上海自然博物馆昨晚(1月31日)迎来了寒假首场“趣玩·博物馆奇妙夜”,不同于以往,本次活动以“动物王...
发放400万元消费券!东莞发出... 1月31日晚,“新春·进莞来团聚”2026年东莞市春节元宵节文旅体系列活动暨龙湾花灯会正式启动。据了...
从“游客”到“家人” 银发族爱... 近期,北方大地寒意正浓,很多银发族选择南下旅居。赴云南享暖阳 旅居老人惬意过冬旅游平台数据显示,今年...
北非摩洛哥纪行—风沙与烟火里,... 卡萨布兰卡的机场 当飞机降落在卡萨布兰卡的机场,咸湿的海风裹挟着北非的阳光扑面而来,我知道,这场期...
距昆明百公里!这座雪山,藏着四... 当清晨的薄雾漫过普渡河大峡谷的山脊,阳光穿透云层洒向拱王山脉深处,一座形似花轿的雪峰在光影中渐次清晰...